Связь вертикальная какие конструкции существуют. Каркас это несущая основа промздания, которая состоит из поперечных и продольных элементов. Нагрузки на подкрановую балку

От воздействия внешней нагрузки, приложенной к узлам фермы, в её элементах появляются сжимающие и растягивающие усилия. В этом случае верхний пояс работает на сжатие, а нижний — на рас-тяжение. Элементы решетки в зависимости от характера и направле-ния действующей нагрузки могут работать как на сжатие, так и на растяжение. При этом сжимающие усилия создают опасность поте-ри устойчивости конструкции. Потеря устойчивости верхнего пояса может происходить в двух плоскостях: в плоскости фермы и из ее плоскости. В первом случае потеря устойчивости происходит за счет выпучивания между узлами фермы (по длине панели). Во втором случае потеря устойчивости возникает между точками пояса, закреп-ленными от смещения в горизонтальном направлении. Устойчивость фермы из ее плоскости является значительно меньшей по сравнению с устойчивостью в ее плоскости, что очевидно из-за того, что длина одной панели значительно меньше длины сжатого пояса.

Отдельная стропильная ферма является балочной конструкци-ей, обладающей очень малой боковой жесткостью. Для того чтобы обеспечить пространственную жесткость сооружения из плоских ферм, они должны быть раскреплены связями, образующими со-вместно с фермами геометрически неизменяемые пространствен-ные системы, обычно решетчатые параллелепипеды (рис. ниже).

Кроме обеспечения пространственной неизменяемости, систе-ма связей должна обеспечивать устойчивость сжатых поясов в на-правлении, перпендикулярном плоскостям раскрепляемых ферм (из плоскости фермы), воспринимать горизонтальные нагрузки и со-здавать условия для высококачественного и удобного монтажа со-оружения.

Связи по конструкциям покрытия здания располагают:

  • в плоскости верхних поясов ферм — горизонтальные попереч-ные связевые фермы 1 и продольные элементы — распорки 2 между ними (рис. ниже);
  • в плоскости нижних поясов ферм — горизонтальные попереч-ные и продольные связевые фермы 3 и распорки 2 (рис. ниже);
  • между фермами — вертикальные связи 4 (рис. ниже).

Связи по покрытию

Горизонтальные связи в плоскости верхних (сжатых) поясов ферм обязательны во всех случаях. Они состоят из раскосов и сто-ек, образующих совместно с поясами стропильных ферм горизон-тальные связевые фермы с крестовой решеткой. Горизонтальные связи располагают между крайними парами ферм в торцах здания (или в торцах температурного отсека), но не реже, чем через 60 м.

Для связи между верхними поясами промежуточных стропиль-ных ферм ставят специальные распорки над опорами и у коньково-го узла при пролете ферм до 30 м; при больших пролетах добавля-ют промежуточные распорки для того, чтобы расстояние между ними не превышало 12 м. Горизонтальные связи по верхним по-ясам ферм обеспечивают устойчивость сжатых поясов из плоско-сти фермы во время монтажа: в этот период расчетная длина таких поясов равна расстоянию между распорками. В процессе эксплуа-тации здания смещению верхних узлов из плоскости фермы пре-пятствуют ребра кровельных плит или прогоны, но только при ус-ловии, что они закреплены от продольных смещений связями, рас-положенными в плоскости кровли.

Горизонтальные связи по нижним поясам ферм устанавливают в зданиях с крановым оборудованием.

Они состоят из поперечных и продольных связевых ферм и рас-порок. В зданиях с кранами легкого и среднего режима работы час-то ограничиваются только поперечными связевыми фермами, рас-полагаемыми между нижними поясами соседних ферм по торцам здания (или температурного отсека). Если длина здания или отсека велика, то устанавливают дополнительную поперечную связевую ферму, чтобы расстояние между такими фермами не превышало 60 м. Ширину продольной связевой фермы обычно принимают рав-ной опорной панели нижнего пояса стропильной фермы.

Горизонтальные связевые фермы воспринимают горизонталь-ные нагрузки от ветра и торможения (поперечного и продольного) кранов.

Стропильные фермы обладают незначительной боковой жест-костью, поэтому процесс монтажа без их предварительного взаим-ного раскрепления невозможен. Эту функцию выполняют верти-кальные связи между фермами, располагающиеся в плоскости опор-ных стоек ферм и в плоскости средних стоек (в фермах пролетом до 30 м) или стоек, ближайших к коньковому узлу, но не реже, чем че-, рез 12 м. Чаще всего вертикальные связи проектируют с крестовой решеткой, но при шаге ферм 12 м может быть применена и тре-угольная решетка. Средние стойки стропильных ферм, к которым прикрепляют вертикальные связи, проектируют крестового сечения.

2.3.2. Связи между колоннами

Назначение связей: 1) создание продольной жесткости каркаса, необходимой для нормальной его эксплуатации; 2) обеспечение устойчивости колонн из плоскости поперечных рам; 3) восприятие ветровой нагрузки, действующей на торцевые стены здания, и продольных инерционных воздействий мостовых кранов.

Связи устанавливают по всем продольным рядам колонн здания. Схемы вертикальных связей между колоннами даны на рис.2.34. Схемы (рис. 2.34, в, г, е ) относятся к зданиям бескрановым или с подвесным крановым оборудованием, все остальные - к зданиям, оборудованным мостовыми опорными кранами.

В зданиях, оборудованных мостовыми опорными кранами, основными являются нижние вертикальные связи. Они в совокупности с двумя колоннами, подкрановыми балками и фундаментами (рис. 2.34 д, ж...л ) образуют геометрически неизменяемые неподвижные в продольном направлении диски. Свобода или стесненность деформации присоединенных к таким дискам других элементов каркаса существенно зависят от количества жестких блоков и их расположения вдоль каркаса. Если вы расположите связевые блоки по торцам температурного отсека (рис. 2.35, а ), то при повышении температуры и отсутствии свободы деформаций ( t 0) возможна потеря устойчивости сжатых элементов. Вот почему вертикальные связи лучше размещать в середине температурного блока (рис. 2.34, а...в , рис. 2.35, б ), обеспечив свободу температурных перемещений по обе стороны от связевого блока (Δ t 0) и исключив появление дополнительных напряжений в продольных элементах каркаса При этом расстояние от торца здания (отсека) до оси ближайшей вертикальной связи и расстояния между связями в одном отсеке не должны превышать значений, приведенных в табл. 1.2.

В надкрановой части колонн вертикальные связи следует предусматривать в торцах температурных блоков и в местах расположения нижних вертикальных связей (см. рис. 2.34 а, в ). Целесообразность установки верхних связей в торцах здания обусловлена, в первую очередь, необходимостью создания кратчайшего пути для передачи ветровой нагрузки R w на торец здания по продольным связевым элементам или подкрановым балкам на фундаменты (рис. 2.36). Эта нарузка равна опорной реакции горизонтальной связевой фермы (см. рис. 2.30) или двух ферм в многопролетных


Рис. 2.35. Влияние схем расположения связевых блоков на развитие температурных деформаций:
a - при расположении связевых блоков по торцам; б - то же, по середине здания

зданиях. Аналогично передаются на фундаменты силы от продольного торможения кранов F кр (рис. 2.36). Расчетную силу продольного торможения принимают от двух кранов одного или смежных пролетов. В длинных зданиях указанные силовые воздействия распределяют поровну на все вертикальные связевые фермы между колоннами в пределах температурного блока.

Конструктивная схема связей зависит от шага колонн и высоты здания. Различные варианты решения связей приведены на рис. 2.34. Самой распространенной является крестовая схема (рис. 2.34, г-и ), так как она обеспечивает наиболее простую и жесткую завязку колонн здания. Количество панелей по высоте назначают в соответствии с рекомендуемым утлом наклона раскосов к горизонтали (α = 35°...55°). При необходимости использования пространства между колоннами, что часто обусловлено технологическим процессом, связи нижнего яруса проектируют портальными (рис. 2.34 к ) или полупортальными (см. рис. 2.34, л ).

Вертикальные связи между колоннами используют также для закрепления в узлах распорок (рис. 2.34 е...и ), если они предусмотрены для уменьшения расчетных длин колонн из плоскостей рам.

В колоннах, имеющих постоянную высоту сечения h ≤ 600 мм, связи располагают в плоскости осей колонн; в ступенчатых колоннах связи выше


Рис. 2.36. Схемы передачи ветровой (с торца здания) и продольной крановой нагрузок:
а, б - здания с мостовыми опорными кранами; в, г - здания с подвесными кранами

тормозной конструкции (верхние вертикальные связи) при h ≤ 600 мм устанавливают по осям колонн, ниже подкрановой балки (нижние вертикальные связи) при h > 600 мм - в плоскости каждой полки или ветви колонны. Узлы связей между колоннами показаны на рис. 2.37.

Крепят связи на болтах грубой или нормальной точности и после выверки колонн могут приваривать к фасовкам. В зданиях с мостовыми кранами групп режимов работы 6К...8К фасонки связей следует обваривать либо выполнять соединения на высокопрочных болтах.

При расчете связей вы можете воспользоваться рекомендациями п.6.5.1 .


СВЯЗИ в конструкциях - легкие конструктивные элементы в виде отдельных стержней или систем (ферм); предназначены для обеспечения пространственной устойчивости основных несущих систем (ферм, балок, рам и т. п.) и отдельных стержней; пространственной работы конструкции путем распределения нагрузки, приложенной к одному или нескольким элементам, на все сооружение; придания сооружению жесткости, необходимой для нормальных условий эксплуатации; для восприятия в отдельных случаях ветровых и инерционных (например, от кранов, поездов и т. п.) нагрузок, действующих на сооружения. Системы связей компонуются так, чтобы каждая из них выполняла несколько из перечисленных функций.

Для создания пространственной жесткости и устойчивости конструкций, состоящих из плоских элементов (ферм, балок), которые легко теряют устойчивость из своей плоскости, они соединяются по верхним и нижним поясам горизонтальными связями. Кроме того, по торцам, а при больших пролетах и в промежуточных сечениях ставятся вертикальные связи - диафрагмы. В результате образуется пространственная система, обладающая большой жесткостью при кручении и изгибе в поперечном направлении. Этот принцип обеспечения пространственной жесткости используется при проектировании многих сооружений.

В пролетных строениях балочных или арочных мостов две главные фермы соединяются горизонтальными системами связей по нижним и верхним поясам ферм. Эти системы связи образуют горизонтальные фермы, которые, помимо обеспечения жесткости, принимают участие в передаче ветровых нагрузок на опоры. Для получения необходимой жесткости при кручении ставятся поперечные связи, обеспечивающие неизменяемость поперечного сечения мостового бруса. В башнях квадратного или многоугольного сечения с этой же целью устраиваются горизонтальные диафрагмы.В покрытиях промышленных и общественных зданий с помощью горизонтальных и вертикальных связей две стропильные фермы соединяются в жесткий пространственный блок, с которым прогонами или тяжами (связями) соединяются остальные фермы покрытия. Такой блок обеспечивает жесткость и устойчивость всей системы покрытия.Наиболее развитую систему связей имеют стальные каркасы одноэтажных промышленных зданий.

Системы горизонтальных и вертикальных связей решетчатых ригелей рам (ферм) и фонарей обеспечивают общую жесткость шатра, закрепляют от потери устойчивости сжатые элементы конструкции (например, верхние пояса ферм), обеспечивают устойчивость плоских элементов в процессе монтажа и эксплуатации.Учет пространственной работы, обеспечиваемой соединением основных несущих конструкций системами связей, при расчете сооружений дает снижение веса конструкций. Так, например, учет пространственной работы поперечных рам каркасов одноэтажных промышленных зданий дает снижение расчетных величин моментов в колоннах на 25-30%. Разработана методика расчета пространственных систем пролетных строений балочных мостов. В обычных случаях связи не рассчитываются, а их сечения назначаются по предельной гибкости, устанавливаемой нормами.

Поперечная устойчивость каркаса деревянных зданий достигается путем защемления основных стоек в фундаментах при шарнирном соединении конструкции покрытия с этими стойками; применения рамных или арочных конструкций с шарнирным опиранием; создания жесткого диска покрытия, что используется в небольших зданиях.Продольная устойчивость здания обеспечивается постановкой (примерно через 20 м) специальной связи в плоскости каркасных стен и среднего ряда стоек. В качестве связей могут быть использованы и стеновые щиты (панели), соответствующим образом скрепленные с элементами каркаса.

Для обеспечения пространственной устойчивости плоскостных несущих деревянных конструкций ставятся соответствующие связи, принципиально аналогичные связи в металлических или железобетонных конструкциях.В арочных и рамных конструкциях, помимо обычного (как в балочных фермах) раскрепления сжатого верхнего пояса, предусматривается раскрепление нижнего пояса, имеющего, как правило, при односторонних нагрузках, сжатые участки. Это раскрепление осуществляется вертикальными связями, попарно соединяющими конструкции. Таким же образом обеспечивается устойчивость из плоскости нижних поясов в шпренгельных конструкциях. В качестве горизонтальных связей могут быть использованы полосы косого настила и щиты кровли. Пространственные деревянные конструкции в специальных связях не нуждаются.


Связи между колоннами.

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Связи, образующие жесткий диск, располагают посередине здания или температурного отсека, учитывая возможность перемещения колонн при температурных деформациях продольных элементов.

Если поставить связи (жесткие диски) по торцам здания, то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают большие температурные усилия F t

При длине здания или температурного блока более 120м между колоннами обычно ставят две системы связевых блоков.

Предельные размеры между вертикальными связями в метрах

Размеры в скобках даны для зданий, эксплуатируемых при расчетных температурах наружного воздуха t= –40° ¸ –65 °С.

Наиболее простая схема связей крестовая, она применяется при шаге колонн до 12 м. Рациональный угол наклона связей , поэтому при небольшом шаге, но большой высоте колонн устанавливают две крестовые связи по высоте нижней части колонны.

В таких же случаях иногда проектируют дополнительную развязку колонн из плоскости рамы распорками.

Вертикальные связи ставят по всем рядам здания. При большом шаге колонн средних рядов, а также чтобы не мешать передаче продукции из пролета в пролет проектируют связи портальной и полупортальной схем.

Вертикальные связи между колоннами воспринимают усилия от ветра W 1 ,и W 2 действующего на торец здания и продольного торможения кранов Т пр.

Элементы крестовых и портальных связей работают на растяжение. Сжатые стержни вследствие большой гибкости выключаются из работы и в расчете их не учитывают. Гибкость растянутых элементов связей, расположенных ниже уровня подкрановых балок не должна превышать 300 для обычных зданий и 200 для зданий с «особым» режимом работы кранов; для связей выше подкрановых балок – соответственно 400 и 300.



Связи по покрытию.

Связи по конструкциям покрытия (шатра) или связи между фермами создают общую пространственную жесткость каркаса и обеспечивают: устойчивость сжатых поясов ферм из их плоскости, перераспределение местных крановых нагрузок, приложенных к одной из рам, на соседние рамы; удобство монтажа; заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Связи по покрытию располагают:

1) в плоскости верхних поясов стропильных ферм – продольные элементы между ними;

2) в плоскости нижних поясов стропильных ферм – поперечные и продольные связевые фермы, а также иногда и продольные растяжки между поперечными связевыми фермами;

3) вертикальные связи между стропильными фермами;

4) связи по фонарям.

Связи в плоскости верхних поясов ферм.

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Ж/б плиты покрытия и прогоны могут рассматриваться как опоры, препятствующие смещению верхних узлов из плоскости фермы при условии, что они закреплены от продольных перемещений связями, расположенными в плоскости кровли. Такие связи (поперечные связевые фермы) целесообразно располагать в торцах цеха, чтобы они вместе с поперечными связевыми фермами по нижним поясам и вертикальными связями между фермами создавали пространственный блок, обеспечивающий жесткость покрытия.

При большей длине здания или температурного блока устанавливают промежуточные поперечные связевые фермы, расстояние между которыми не должно превышать 60 м.

Для обеспечения устойчивости верхнего пояса фермы из ее плоскости в пределах фонаря, где нет кровельного настила, предусматриваются специальные распорки, в коньковом узле фермы обязательны. В процессе монтажа (до установки плит покрытия или прогонов) гибкость верхнего пояса из плоскости фермы должна быть не более 220. Поэтому, если коньковая распорка не обеспечивает этого условия, между ней и распоркой на опоре фермы (в плоскости колонн) ставят дополнительную распорку.

Связи в плоскости нижних поясов ферм

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания.

При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха.

Если поперечная жесткость каркаса недостаточна, краны при движении могут заклиниваться и нарушается нормальная эксплуатация. Чрезмерные колебания каркаса создают неблагоприятные условия для работы кранов и сохранности ограждающих конструкций. Поэтому в однопролетных зданиях большой высоты (H>18 м), в зданиях с мостовыми кранами Q>100 кН, с кранами тяжелого и весьма тяжелого режимов работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Горизонтальные силы F от мостовых кранов воздействуют в поперечном направлении на одну плоскую раму или две-три смежные.

Продольные связевые фермы обеспечивают совместную работу системы плоских рам, вследствие чего поперечные деформации каркаса от действия сосредоточенной силы значительно уменьшаются.

Стойки торцевого фахверка передают ветровую нагрузку F вт в узлы поперечной связевой фермы.

Чтобы избежать вибрации нижнего пояса фермы вследствие динамического воздействия мостовых кранов ограничивается гибкость растянутой части нижнего пояса из плоскости рамы: при кранах с числом циклов нагружения 2×10 6 и более – величиной 250, для прочих зданий – величиной 400. Для сокращения длины растянутой части нижнего пояса в некоторых случаях ставят растяжки, закрепляющие нижний пояс в боковом направлении.

Вертикальные связи между фермами.

Эти связи связывают между собой стропильные фермы и препятствуют их опрокидыванию. Они устанавливаются, как правило, в осях, где установлены связи по нижним и верхним поясам ферм образуя совместно с ними жесткий блок.

В зданиях с подвесным транспортом вертикальные связи способствуют перераспределению между фермами крановой нагрузки приложенной непосредственно к конструкциям покрытия. В этих случаях, а также к стропильным фермам крепят электрические кран – балки значительной грузоподъемности, вертикальные связи между фермами располагают в плоскостях подвески непрерывно по всей длине здания.

Конструктивная схема связей зависит главным образом от шага стропильных ферм.

Связи по верхним поясам стропильных ферм

Связи по нижним поясам стропильных ферм

Для горизонтальных связей при шаге ферм 6м может быть применена крестовая решетка, раскосы которой работают только на растяжение (рис а).

В последнее время в основном применяются связевые фермы с треугольной решеткой (рис б). Здесь раскосы работают как на растяжение, так и на сжатие, поэтому их целесообразно проектировать из труб или гнутых профилей, позволяющих снизить расход металла на 30-40 %.

При шаге стропильных ферм 12 м диагональные элементы связей даже работающие только на растяжение, получаются слишком тяжелыми. Поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12 м, и этим элементом поддерживают диагонали (рис в, г).

Обеспечить крепление продольных связей можно и без решетки связей по верхнему поясу ферм, которая не дает возможности использовать сквозные прогоны. В этом случае в жесткий блок входят элементы покрытия (прогоны, панели), стропильные фермы и часто расположенные вертикальные связи (рис д). Такое решение является в настоящее время типовым. Элементы связи шатра (покрытия) рассчитываются, как правило, по гибкости. Предельная гибкость для сжатых элементов этих связей – 200, для растянутых – 400, (при кранах с числом циклов 2×10 6 и более – 300).

Система конструктивных элементов, служащих для поддержания стенового ограждения и восприятия ветровой нагрузки называется фахверком.

Фахверк устраивается для нагруженных стен, а также для внутренних стен и перегородок.

При самонесущих стенах, а также при панельных стенах с длинами панелей, равными шагу колонн, необходимости в конструкциях фахверка нет.

При шаге наружных колонн 12 м и стеновых панелях длиной 6м устанавливаются промежуточные фахверковые стойки.

Фахверк, устанавливаемый в плоскости продольных стен здания, называется продольным фахверком. Фахверк, устанавливаемый в плоскости стен торца здания, называется торцевым фахверком.

Торцовый фахверк состоит из вертикальных стоек, которые устанавливаются через 6 или 12 м. Верхние концы стоек в горизонтальном направлении опирают на поперечную связевую ферму в уровне нижних поясов стропильных ферм.

Чтобы не препятствовать прогибу стропильных ферм от временных нагрузок, опирание стоек фахверка осуществляется с помощью листовых шарниров, представляющих собой тонкий лист t=(8 10мм) шириной 150 200мм, который в вертикальном направлении легко изгибается, не препятствуя прогибу фермы; в горизонтальном направлении он передает усилие. К стойкам фахверка крепят ригели для оконных проемов; при большой высоте стоек в плоскости торцевой стены ставят распорки, уменьшающие их свободную длину.

Стены из кирпича или бетонных блоков устраивают самонесущими, т.е. воспринимающими весь свой вес, и только боковая нагрузка от ветра передается стеной на колонну или стойку фахверка.

Стены из крупнопанельных ж/б плит устанавливаются (навешиваются) на столики колонн или фахверковых стоек (один столик через 3 – 5 плит по высоте). В этом случае фахверковая стойка работает на внецентренное сжатие.

Усилия от ветровой нагрузки, действующей на наружные стены, собираются в плоскостях перекрытий и покрытия и далее передаются к вертикальным элементам несущего каркаса. В большинстве случаев несущие конструкции перекрытий и покрытия образуют жесткие диски, способные передавать ветровые нагрузки с наружных стен на каркас здания. В противном случае требуется устройство специальных горизонтальных связей. В многоэтажных зданиях горизонтальные связи достаточно иметь в плоскости каждого второго или третьего перекрытия. Несущая способность колонн в большинстве случаев достаточна для восприятия ветровой нагрузки с грузовой площади высотой два-три этажа.

Плиты перекрытий могут выполнять функции горизонтальных ветровых связей только после того, как они приобретут требуемую прочность после бетонирования, поэтому на период монтажа каркаса необходимы временные связи, которые позднее могут быть сняты.

Ветровые связи необходимы не по всей площади покрытия или междуэтажного перекрытия, а размещение их должно быть таким, чтобы была обеспечена передача горизонтальных усилий на вертикальные связи.


1. Вертикальные связи расположены вокруг лестничной клетки в трех плоскостях. Горизонтальная связевая ферма в продольном направлении здания образована постановкой раскосов между рандбалками и поясом параллельно наружной стене. Поперечная горизонтальная связевая ферма образована между двумя балками перекрытия, служащими ее поясами.

2. Вертикальные связи в плоскостях торцовых стен и между двумя внутренними колоннами. Горизонтальная связевая ферма в продольном направлении здания образована между рандбалками и прогонами, идущими в плоскости вертикальных связей. Поясами поперечной связевой фермы служат две балки перекрытия.

3. Вертикальные связи в плоскостях торцовых стен и между двумя внутренними колоннами. Горизонтальная связевая ферма в продольном направлении здания образована между двумя рядами внутренних колонн (удачное решение при планировке центрально расположенного коридора).

Поперечная горизонтальная связевая ферма образована между двумя средними рядами балок перекрытия.

4. Горизонтальные связи в плоскости верхних поясов балок перекрытия и рандбалки Раскосы из уголков. Фасонка и головки болтов могут мешать укладке гофрированных листов настила.

5. Связи установлены в плоскости нижнего пояса балки перекрытия.

6. Крепление раскосов из уголков в узле примыкания рандбалки и балки перекрытия к колонне.

7. При отсутствии продольной балки, являющейся одновременно поясом связевой фермы, необходим дополнительный элемент (здесь один швеллер).

8. Крепление пересекающихся связевых стержней к балке перекрытия.

9. Если балки перекрытия лежат на прогонах, то наилучшим решением будет размещение связей в плоскости нижних поясов балок.