Современные системы охраны периметров: радиоволновые и радиолучевые периметральные системы. Реферат на тему радиоволновые и радиолучевые средства обнаружения О двух подходах к построению рвсо

1. Введение

1.1. Периметр - первая линия защиты

Современные электронные системы охраны весьма разнообразны и в целом достаточно эффективны. Однако большинство из них имеют общий недостаток: они не могут обеспечить раннее детектирование вторжения на территорию объекта. Такие системы, как правило, ориентированы на обнаружение нарушителя, который уже проник на охраняемую территорию или в здание. Это касается, в частности, систем видеонаблюдения; они зачастую с помощью устройства видеозаписи могут лишь подтвердить факт вторжения после того, как он уже произошел.

Квалифицированный нарушитель всегда рассчитывает на определенное временное “окно”, которое проходит от момента проникновения на объект до момента срабатывания сигнализации. Минимизация этого интервала времени является коренным фактором, определяющим эффективность любой охранной системы, и в этом смысле привлекательность периметральной охранной сигнализации неоспорима.

Периметральная граница объекта является наилучшим местом для раннего детектирования вторжения, т.к. нарушитель взаимодействует в первую очередь с физическим периметром и создает возмущения, которые можно зарегистрировать специальными датчиками. Если периметр представляет собой ограждение в виде металлической решетки, то ее приходится перерезать или преодолевать сверху; если это стена или барьер, то через них нужно перелезть; если это стена или крыша здания, то их нужно разрушить; если это открытая территория, то ее нужно пересечь.

Все эти действия вызывают физический контакт нарушителя с периметром, который предоставляет идеальную возможность для электронного обнаружения, т.к. он создает определенный уровень вибраций, содержащих специфический звуковой “образ” вторжения. При определенных условиях нарушитель может избегнуть физического контакта с периметром. В этом случае можно использовать “объемные” датчики вторжения, обычно играющие роль вторичной линии защиты.

Датчик любой периметральной системы реагирует на появление нарушителя в зоне охраны или определенные действия нарушителя. Сигналы датчика анализируются электронным блоком (анализатором или процессором), который, в свою очередь, генерирует сигнал тревоги при превышении заданного порогового уровня активности в охраняемой зоне.

1.2. Общие требования к периметральным системам

Любая периметральная система охраны должна отвечать определенному набору критериев, некоторые из которых перечислены ниже:

  • Возможность раннего обнаружения нарушителя - еще до его проникновения на объект
  • Точное следование контурам периметра, отсутствие “мертвых” зон
  • По возможности скрытая установка датчиков системы
  • Независимость параметров системы от сезона (зима, лето) и погодных условий (дождь, ветер, град и т.д.)
  • Невосприимчивость к внешним факторам “нетревожного” характера - индустриальные помехи, шум проходящего рядом транспорта, мелкие животные и птицы
  • Устойчивость к электромагнитным помехам - грозовые разряды, источники мощных электромагнитных излучений и т.п.

Очевидно, что периметральная охранная система должна обладать максимально высокой чувствительностью, чтобы обнаружить даже опытного нарушителя. В то же время эта система должна обеспечивать по возможности низкую вероятность ложных срабатываний. Причины ложных тревог могут быть различными. Система может, например, среагировать при появлении в зоне охраны птиц или мелких животных. Сигнал тревоги может появиться при сильном ветре, граде или дожде. Кроме того, ложная тревога может возникнуть из-за “технологических” причин: неграмотный монтаж датчиков на ограде, неправильная настройка электронных блоков или просто неудовлетворительное инженерное состояние самой ограды, которая может, например, вибрировать при сильном ветре.

Сегодня рынок периметральных систем, как отечественных, так и импортных, весьма широк. Тем не менее, выбрать наиболее эффективную систему, отвечающую специфическим требованиям объекта, иногда бывает непросто. При выборе и проектировании системы нужно учитывать множество факторов - тип ограды, топографию и рельеф местности, возможность выделения полосы отчуждения, наличие растительности, соседство железных дорог, эстакад и автомагистралей, наличие линий электропередач.

Весьма важным фактором является квалификация и опыт организации, которая проектирует и монтирует периметральную систему охраны. Опыт показывает, что зачастую эффективность системы определяется не столько ее исходными техническими параметрами, сколько правильностью выбора и грамотностью ее монтажа.

Для оценки эффективности периметральных систем чаще всего используют специальные испытательные полигоны. Охранные системы там монтируют на стандартных оградах и оценивают их по специальным методикам, имитируя различные действия нарушителя - разрушение ограды, перелезание, подкоп и др.

1.3. Специфика применения периметральных систем

Особенность периметральных систем состоит в том, что обычно они конструктивно интегрированы с ограждением и генерируемые охранной системой сигналы в сильной степени зависят как от физико-механических характеристик ограды (материал, высота, жесткость и др.), так и от правильности монтажа датчиков (выбор места крепления, метод крепления, исключение случайных вибраций ограды и т.п.). Очень большое значение имеет правильный выбор типа охранной системы, наиболее адекватно отвечающей данному типу ограды.

Периметральные системы используют, как правило, систему распределенных или дискретных датчиков, общая протяженность которых может составлять несколько километров. Такая система должна обеспечивать высокую надежность при широких вариациях окружающей температуры, при дожде, снеге, сильном ветре. Поэтому любая система должна обепечивать соответсвующую автоматическую адаптацию к погодным условиям и возможность дистанционной диагностики.

Любая периметральная система должна легко интегрироваться с другими охранными системами, в частности, с системой видеонаблюдения.

2. Радиолучевые системы

Такие системы содержат приемник и передатчик СВЧ сигналов, которые формируют зону обнаружения в виде вытянутого эллипсоида вращения (рис.1). Длина отдельной зоны охраны опредлеятся расстоянием между приемником и передатчиком, а диаметр зоны варьируется от долей метра до нескольких метров.

Рис. 1. Принцип действия радиолучевой системы.

Принцип действия таких систем основан на анализе изменений амплитуды и фазы принимаемого сигнала, возникающих при появлении в зоне постороннего предмета. Системы применимы там, где обеспечивается прямая видимость между приемником и передатчиком, т.е. профиль поверхности должен быть достаточно ровным и в зоне охраны должны отсутствовать кусты, крупные деревья и т.п.

Применяют радиолучевые системы как при установке вдоль оград, так и для охраны неогражденных участков периметров. Эти системы обычно рассчитаны на обнаружение нарушителя, который предодолевает рубеж охраны в полный рост или согнувшись.

Общим недостатком радиолучевых систем является наличие “мертвых” зон - чувствительность системы понижена вблизи приемника и передатчика, поэтому приемники и передатчики соседних зон должны устанавливаться с перекрытием в несколько метров. Кроме того, радиолучевые системы недостаточно чувствительны непосредственно над поверхностью земли (30 - 40 см), что может позволить нарушителю преодолеть рубеж охраны ползком.

Относительно широкая зона чувствительности системы обуславливает ограниченность ее применения на объектах, где возможно случайное попадание в зону обнаружения людей, транспорта и т.п. В таких ситуациях для предотвращения ложных срабатываний рекомендуется с помощью дополнительной ограды оборудовать предзонник.

Блоки радиолучевых систем устанавливают либо на грунте (с помощью специальных стоек), либо на ограде или стене здания. При установке системы на грунте требуется подготовить охраняемую зону - спланировать территорию, удалить кустарники, деревья и посторонние предметы. При эксплуатации необходимо периодически выкашивать траву и убирать снег. При значительной высоте снежного покрова (более 0,5 м) необходимо изменить высоту крепления блоков на стойках и провести их дополнительную юстировку.

Рассмотрим несколько радиолучевых периметральных систем

Система “Гефест”, выпускаемая предприятием Дедал, предназначена для охраны огражденных и неогражденных рубежей длиной от 10 до 200 метров. Она позволяет обнаруживать человека передвигающегося в полный рост или согнувшись. Зона чувствительности имеет высоту 2,5 м и ширину 5 м. Приемник системы анализирует изменения амплитуды сигнала и при превышении заданного порога включает реле тревоги. В системе применен оригинальный алгоритм обработки обнаружения с раздельной регулировкой чувствительности для ближних и среднего участков зоны чувствительности. Система не срабатывает при появлении в зоне мелких животных или птиц; она устойчива к воздействиям снега, дождя и ветра.

В комплект поставки входят передатчик, приемник, блок питания, монтажный комплект и соединительные кабели. Приемник и передатчик помещены в корпуса из ударопрочного полистирола с габаритами 260 х 210 х 60 мм. Диапазон рабочих температур - от -40 до +50 градусов цельсия, напряжение питания - 12 В, потребляемая мощность 1 Вт. Обеспечена возможность дистанционного контроля работоспособности системы.

Аналогичная по назначению система “Грот” позволяет защищать участки периметра длиной до 300 м при ширине зоны обнаружения 6 м. Усовершенствованная конструкция блоков приемника и передатчика позволила повысить однородность электромагнитного поля и практически исключить области малой чувствительности на краях зоны. Система сохраняет работоспособность и не требует дополнительной настройки при высоте снежного покрова до 70 см.

Для зон длиной до 500 м можно использовать радиолучевое охранное устройство “Барьер”, по конструктивным данным аналогичное системе “Гефест”.

Периметральная радиолучевая система РЛД-94 (фото 1) выпускается в трех модификациях: для участков длиной 30, 100 и 300 м. Модификации на 100 и 300 м представляют собой базовый комплект (на 30 м), оснащенный дополнительными отражателями. В приборе используется импульсный синхронный режим работы, что позволяет снизить энергопотребление и повысить помехоустойчивость к воздействию электромагнитных помех. Система РЛД-94 широко используется в охранных комплексах АЭС, крупных предприятий, таможенных терминалов и др.

Фото 1. Периметральная радиолучевая система РДЛ-94.

Из зарубежных радиолучевых систем, представленных на российском рынке, можно отметить “Модель 16001 ” фирмы Senstar-Stellar (США). Система позволяет защищать зоны длиной до 240 м и предназначена для установки на земле, на торце ограды или на стене здания. Отличительная особенность передатчика - возможность регулировки угловой ширины диаграммы излучения в пределах от 11 О до 24 О и таким образом оптимизировать поперечное сечение чувствительной зоны.

Широкий спектр радиолучевых охранных приборов выпускает итальянская компания CIAS. Приборы серии Ermusa отличаются компактностью и предназначены для использования как в помещениях, так и на улице для барьеров протяженностью 40 - 80 м. На фото 2 показаны блоки радиолучевой системы ERMO 482 фирмы CIAS. Приборы выпускаются в нескольких модификациях - для рубежей протяженнностью 50, 80, 120 и 200 м. Используемые в блоках параболические антенны обеспечивают малую расходимость луча, что позволяет использовать эту систему даже в условиях интенсивного городского движения. Частота излучения передатчика - 10,58 ГГц, питание - от аккумуляторной батареи или сетевого адаптера. Диаметр блока - 310 мм, глубина - 270 мм, масса - 3кг. Блоки монтируются на сборных металлических штангах, позволяющих устанавливать излучатель и приемник на высоте до 1 метра. Со штангой конструктивно объединена коробка для блока питания и аккумулятора. Диапазон рабочих температур -25 О до +55 О С.

Все перечисленные системы обеспечивают только одну зону охраны и применяются на прямолинейных участках периметра. На участках с непрямолинейной границей или при сложном рельефе местности нужно использовать многозонную систему, состоящую из нескольких комплектов аппаратуры. Для небольших объектов были разработаны многозонные радиолучевые системы, имеющие один общий блок обработки сигналов.

В комплект системы “Протва” входит пять приемо-передающих пар и блок анализатора сигналов. Каждая приемо-передающая пара позволяет защитить участок длиной до 100 м. Весь комплект хорошо подходит для охраны, например, небольшого склада - 4 зоны периметра и 1 зона охраны ворот. Имеются режимы дистанционного контроля и ручного отключения любого канала. Система питается от сети переменного тока (220 В или 36 В) или от источника постоянного тока 24 В. Рабочая температура от -50 О до +50 О С; влажность - до 98% (при температуре +35 О С).

Для специальных применений создана быстроразворачиваемая полевая системаВитим” (фото 3). Она используется для организации временных рубежей охраны на неподготовленных территориях. Комплект состоит из 11 приемо-передающих устройств, позволяющих организовать 10 отдельных участков охраны протяженностью по 100 м. Каждая из 11-ти стоек содержит встроенный аккумулятор для питания приборов. Приемники подключены к выносному блоку индикации, который показывает номер участка, в котором возник сигнал тревоги. Особенность системы - использование радиолуча для подачи сигналов тревоги. Это позволяет оперативно развернуть систему - для установки и настройки 10 зон требуется не более 1 часа. Прибор широко используется на объектах Министерства обороны.

Все перечисленные выше радиоволновые детекторы являются “двухпозиционными” устройствами - в комплект входят передатчик и приемник. Более простыми и дешевыми являются “однопозиционные” устройства, представлющие по сути дела маломощные радары. Они могут применяться для защиты участков протяженностью до 20 м - ворота и окна складов, зоны въезда транспорта и т.п. Особенность однопозиционных систем по сравнению с двухпозиционными - менее четкая граница чувствительной зоны, “размытость” ее краев.

Однопозиционные системы “Агат-3П ” и “Агат-СП3 ” предназначены для применения в помещениях (рабочая температура от -5 О до +50 О С). Электронный блок имеет размеры 260 х 210 х 60 мм; напряжение питания 12 В, потребляемая мощность 0,5 Вт. Дальность обнаружения - 16 и 20 м соответственно, поперечные размеры чувствительной зоны - 5 х 5 м. Однопозиционный прибор “Агат-СП3У” можно использовать и на улице (рабочая температура от -40 О до +50 О С). Прибор отличается компактностью (размер блока 110 х 80 х 45 мм) и малым энергопотреблением (менее 0,1 Вт при напряжении 12...30 В). Размер чувствительной зоны - 20 х 5 х 5 м. Во всех приборах серии “Агат” обеспечены регулировка чувствительности и адаптивный порог срабатывания.

3. Радиоволновые системы

Чувствительным элементом такой системы является пара расположенных параллельно проводников (кабелей), к которым подключены соответственно передатчик и приемник радиосигналов. Вокруг проводящей пары (“открытой антенны”) образуется чувствительная зона, диаметр которой зависит от взаимного расположения проводников. При появлении человека в зоне чувствительности сигнал на выходе приемника изменяется и система генерирует сигнал тревоги.

При использовании радиоволновых систем на оградах, кабели устанавливают либо на специальных стойках на верхнем торце ограды, либо непосредственно на поверхности ограды.

Выпускаются модификации радиоволновых систем также для защиты неогражденных территорий. При этом кабели устанавливают в грунт на глубину 15 - 30 см. Такая система охраны является скрытой, но подвержена сильному влиянию погодных условий, снижающих стабильность ее параметров.

Преимущества радиоволновых систем перед лучевыми - независимость от профиля почвы и точное следование линии ограды.

Одно из наиболее известных отечественных охранных устройств радиоволнового типа - система “Уран-М” - разработка предприятия НИКИРЭТ (г. Заречный, Пензенская обл.). Двухпроводная линия (рис. 2.) закрепляется на вертикальных или наклонных кронштейнах (консолях), выполненных из диэлектрика (входят в комплект поставки). В качестве проводников используется провод полевой телефонной связи П-274М, обеспечивающий достаточную механическую прочность и стойкость к атмосферным воздействиям. Длина одной зоны охраны находится в пределах от 10 до 250 м. Расстояние между соседними кронштейнами обычно составляет 6...8 м, в районах с сильными ветрами его рекомендуется уменьшать до 3...4 м.

Рис. 2. Схема двухпроводного радиоволнового устройства.

Для протяженных периметров используют несколько комплектов “Уран-М”. Для исключения влияния соседних зон предусмотрен режим взаимной синхронизации до 22 - 25 отдельных комплектов. Радиоволновые системы можно устанавливать практически на любых жестких оградах (кирпич, бетон, металл).

В состав системы “Уран-М” входят: задающий блок, подключаемый с одной стороны проводной линии, и блок обработки сигналов, подключаемый с другой стороны линии. Задающий блок формирует импульсный высокочастотный сигнал, создающий электромагнитное поле между проводниками. Зона обнаружения имеет в поперечном сечении вид эллипса, в фокусах которого расположены проводники. Расстояние между проводниками обычно составляет 0,4 м; при этом зона обнаружения имееть размер 0,5 х 0,8 м.

Система настраивается для детектирования объекта массой более 30 - 40 кг и не срабатывает при попадании в зону птиц или мелких животных. Система не срабатывает при движении транспорта на расстоянии более 3 м от чувствительных проводников. Напряжение питания 20...30 В, ток питания - не более 100 мА. Обеспечен режим дистанционного контроля работоспособности. Охранное устройство устойчиво к воздействию сильного дождя (до 40 мм/час), снега, града и ветра со скоростью до 20 м/сек. Электронные блоки имеют размеры 255 х 165 х 110 мм, они сохраняют работоспособность в температурном диапазоне от -40 О до +40 О. Конструкция блоков обеспечивает защиту от внешних электромагнитных помех и высокой влажности.

Американская компания Senstar-Stellar предлагает радиоволновое устройство “H-Field” с кабелями, укладываемыми непосредственно в землю. Такая система предназначена для охраны открытых пространств, подступов к объектам и т.п. Два параллельных кабеля (приемный и передающий) закапываются в любой грунт на грубину 10 - 15 см и на расстоянии примерно 2-х метров друг от друга (рис. 3). Вокруг кабелей над поверхностью почвы формируется электромагнитное поле (зона обнаружения) шириной 3м и высотой 1 м. Максимальная длина одной зоны обнаружения - 150 м. Кабели подключаются соответственно к приемнику и передатчику (или к общему приемо-передающему блоку - трансиверу). Эффективность детектирования нарушителя обеспечивается тем, что для выбранной частоты человеческое тело представляет собой как бы антенну размером в 1/4 длины радиоволны и поэтому нарушитель сильно изменяет параметры принимаемого сигнала.


Рис. 3. Схема расположения кабелей системы H-Field.

Алгоритм обработки сигналов в системе “H-Field” предполагает выполнение трех условий:
- масса попавшего в зону объекта должна быть больше заранее установленного значения (масса человеческого тела);
- объект должен двигаться со скоростью, не меньшей определенного значения (в диапазоне скоростей человека);
- оба указанных условия выполняются в заданном интервале времени.

Система “H-Field” обеспечивает скрытную установку датчиков при произвольном профиле линии охраны. Кабели нечувствительны к сейсмическим и акустическим воздействиям, их можно монтировать в грунте, под асфальтовыми дорогами и др.

Одна из современных радиоволновых технологий обнаружения получила наименование RAFID - Ra dio F requency I ntruder D etection (Радиочастотное Детектирование Вторжения). Эта охранная система создана английской компанией Geoquip, широко известной своими периметральными системами на сенсорных микрофонных кабелях.

В простейшем случае система RAFID содержит пару “Излучающих Фидеров” (ИФ), один из которых является излучающей, а другой - приемной антенной радиочастотного поля. Выходной сигнал приемника непрерывно контролируется анализатором.

ИФ представляет собой специально сконструированный коаксиальный кабель, содержащий внутренний провод, изолированный диэлектриком от внешнего экрана (рис. 4). Внешний экран может представлять собой медную оплетку, похожую на оплетку обычного коаксиального кабеля. Особенностью ИФ являются так называемые “порты”, т.е. отверстия в экране, расположенные с регулярными интервалами. Конструкция кабеля обеспечивает излучение электромагнитного поля при пропускании по нему тока. Вблизи обоих кабелей формируется невидимое электромагнитное поле, конфигурация которого зависит от взаимного расположения ИФ.

Рис. 4. Конструкция излучающего фидера системы RAFID.

Попавший в радиочастотное поле объект изменяет фазу и амплитуду принимаемого сигнала (эффект Допплера), в результате чего анализатор генерирует сигнал тревоги.

Кабели располагают параллельно друг другу и монтируются на жесткой стене или другом ограждении, обеспечивая зону детектирования, как показано на рис. 5. (Расстояние между кабелями и их расположение определяются конкретными требованиями заказчика и условиями детектирования).

Рис. 5 (а, б) зоны обнаружения системы RAFID.

Кабели системы RAFID устанавливаются на жестких оградах (бетон, кирпич, дерево) или непосредственно в грунте. Количество линий кабеля (2 или 3) и их расположение на ограде определяются задачей, стоящей перед охранной системой. Так, если нужно регистрировать нарушителя, пытающегося перелезть через ограду, то кабели располагаются вблизи средней линии ограды (примерно на половине ее высоты), см. рис. 5а. При этом вблизи нижней части ограды может быть оставлена нечувствительная зона - “аллея для животных”, на которых не должна реагировать система. Если же нужно обнаружить нарушителя, только приближающегося к линии периметра, то в этом случае один из кабелей крепят в нижней части ограды или непосредственно в почве на некотором расстоянии от стены (рис. 5б).

Для обработки сигналов в системе применен мощный процессор, позволяющий проводить “обучение” системы непосредственно на объекте. Процессор содержит в памяти как типовые сигналы вторжения, так и нетревожные сигналы от окружающей обстановки (проходящий транспорт и т.п.). При совпадении реально регистрируемого сигнала с одним из записанных в памяти тревожных образов система выдает сигнал тревоги. Система практически не подвержена влиянию таких атмосферных факторов, как дождь, туман, град, снег, дым и применяется в различных климатических зонах.

Заключение

Принцип действия всех описанных выше охранных систем основан на использовании электромагнитных волн радиочастотного диапазона. Однако для охраны периметров разработаны и успешно применяются и другие системы, работающие с детекторами различных типов: оптические инфракрасные датчики (лучевые и пассивные), сейсмические вибрационные датчики, микрофонные кабели, емкостные системы, волоконно-оптические кабели и др. Они будут рассмотрены в следующих номерах журнала.

Предоставлено журналом "Специальная техника"


Универсальной системы обнаружения (СО), которая была бы оптимальна для всей территории России и многообразия условий эксплуатации, не существует, да и вряд ли она будет создана. Выбор наиболее эффективной СО зависит от множества факторов и, прежде всего, от особенностей месторасположения защищаемого объекта, его архитектурного решения, окружающей обстановки и многого другого.

В связи с этим ГУП СНПО "Элерон" разработало целый комплекс средств и систем для защиты периметров, учитывая разнообразие условий охраны отечественных объектов

Особенности периметровой защиты объектов

Приоритетная сфера деятельности ГУП СНПО "Элерон" - создание периметровых средств и систем охраны (ССО) объектов. Создание эффективных ССО - чрезвычайно сложная и наукоемкая проблема. Для ее успешного решения требуются длительные экспериментальные исследования физики процесса обнаружения, сбор информации о сигналах и помехах, поиск наиболее эффективных алгоритмов обработки сигнала, тщательная отработка схемотехнических решений. Для проведения исследований и испытаний ССО необходимы полигоны в различных климатических зонах страны, парк аппаратуры для записи и обработки сигналов, имитации помеховых воздействий и, самое главное, коллектив высококвалифицированных специалистов: физиков, исследователей, программистов, схемотехников.

Защита периметра - один из наиболее важных элементов комплекса безопасности объекта, особенно для атомных или теплоэнергетических станций, нефтегазоперерабатывающих предприятий, нефтяных терминалов, аэропортов, складов готовой продукции и т.д. В ряде случаев крупные объекты имеют внутри периметра еще дополнительные защищаемые локальные зоны - наиболее важные и ответственные центры (сосредоточение материальных ценностей и т.д.). Часто возникает задача временной, краткосрочной охраны небольших периметров, например, при остановке транспорта с ценным грузом, временном складировании оборудования, строительстве и т.п.

Специфика отечественных условий проектирования и эксплуатации периметровых систем защиты заключается прежде всего в широком разнообразии климатических и почвенногеологических условий. Большие сезонные колебания температуры, сильные снегопады, метели, мокрый снег, частые плотные туманы, ураганные ветры, сильные дожди, гололед, иней вызывают большие трудности при выборе соответствующей сигнализации и делают практически невозможным использование какойлибо единой системы для любой климатической зоны России. Поэтому проектировщик должен хорошо ориентироваться в существующем многообразии выпускаемых систем, сигнализации, знать их особенности, сферу наиболее эффективного применения и специфику использования.

Для правильного выбора оптимального средства защиты периметра необходимо учитывать возможность выделения полосы отчуждения (запретной зоны) для размещения средств сигнализации, рельеф местности, топографию объекта, растительность, наличие вблизи периметра железнодорожных путей и автомагистралей, миграцию животных, прохождение линий электропередач, трубопроводов, кабельных линий и т.д. Определенные сложности возникают при разрыве в периметре для проезда железнодорожного или автомобильного транспорта (устройство ворот, шлагбаумов, пунктов досмотра транспорта). При недостаточном внимании они могут стать источниками повышенной опасности или вызывать частые ложные срабатывания.

Тактико-технические характеристики периметровых систем обнаружения

Основными тактико-техническими характеристиками таких периметровых систем являются:

Вероятность обнаружения, то есть выдачи сигнала тревоги при пересечении человеком зоны обнаружения. Она определяет "тактическую надежность" рубежа охраны и должна составлять не менее 0,9-0,95;

Наработка на ложное срабатывание - самый важный показатель, во многом определяющий общую эффективность комплекса безопасности;

Универсальность и гибкость средства обнаружения - возможность работы в широком диапазоне условий эксплуатации в различных климатических условиях для защиты разнообразных объектов;

Уязвимость системы, то есть возможность преодоления рубежа без выдачи сигнала тревоги;

Маскировка (визуальная и техническая) средств обнаружения. Это позволяет увеличить надежность системы, поскольку нарушитель не знает о наличии охранной сигнализации, и кроме того, это не искажает архитектурного облика престижных зданий;

Надежность, долговечность, простота монтажа и эксплуатации;

Цена погонного метра рубежа охраны, то есть суммарная стоимость аппаратуры, чувствительных элементов, их монтажа и наладки, приходящихся на 1 м длины периметра.

Физические принципы действия периметровых средств обнаружения

Для обнаружения факта вторжения человека в охраняемую зону могут быть использованы самые различные физические принципы, позволяющие с той или иной вероятностью различить сигнал от человека на фоне помеховых воздействий окружающей среды. Первыми сигнализационными системами были средства в виде вертикального забора из колючей проволоки, образующей шлейф, его сопротивление измерялось резистивным датчиком. Последний выдавал сигнал тревоги при обрыве шлейфа или при замыкании соседних проводов.

Хотя такие системы существуют и сегодня, современное их использование нецелесообразно как из-за внешнего вида, так и из-за низкой эффективности - проволока через несколько месяцев покрывается слоем окиси и датчик не срабатывает при замыкании соседних проводов. Вероятность обнаружения в этом случае падает до 20- 30%.

Емкостные системы

Новым шагом в разработке периметровых средств обнаружения явилось создание в ГУП СНПО "Элерон" в 70-х годах емкостных систем, использующих эффект изменения характеристик электрического поля вблизи "антенной системы" - чувствительного элемента в виде металлической конструкции, размещаемой с помощью изоляторов по верху пассивного ограждения. Использование отечественного ноу-хау - "охранного электрода", защищенного авторским свидетельством СССР, - выдвинуло эту разработку в лидеры периметровых систем сигнализации и обеспечило ей широкое внедрение для защиты сотен километров периметров самых разнообразных объектов.

Принцип действия емкостного сигнализатора основан на измерении емкости антенного устройства относительно земли. При этом электронный блок производит измерение только емкостной составляющей импеданса антенны и не реагирует на изменение сопротивления (квадратурная обработка сигнала с помощью синхронного детектора). Применение алгоритма, анализирующего длительность сигнала, его фронтов и других характерных особенностей, позволило довести вероятность обнаружения до 95% при средней частоте ложных срабатываний менее одного за десять суток при длине блокируемого участка до 500 м. Конструкция антенного устройства представляет собой металлический козырек, изготавливаемый в виде сварной решетки, допускает изгибы в вертикальной и горизонтальной плоскостях, позволяет отслеживать рельеф местности и другие топографические особенности объекта. При соответствующем дизайне козырек не ухудшает внешний архитектурный облик здания.

К настоящему времени разработано целое семейство емкостных сигнализаторов - "Радиан" ("Радиан-М", "Радиан-13", "Радиан14"). Общее число установленных приборов превышает 50 000.

Отические лучевые инфракрасные сигнализаторы

Оптические лучевые инфракрасные сигнализаторы состоят из одной или нескольких пар "излучатель-приемник", формирующих невидимый глазом луч в диапазоне 0,8-0,9 микрон, прерывание которого вызывает сигнал тревоги. Лучевая система может устанавливаться как по верху ограждения, так и непосредственно на грунте в виде нескольких лучей, образующих вертикальный барьер. К сожалению, их применение в наших условиях связано со многими трудностями, поскольку снежные заносы, растительность, туман вызывают или ложные срабатывания, или отказ системы.

Радиолучевые средства обнаружения

Более эффективны радиолучевые средства обнаружения, использующие также пару "излучатель-приемник", но другой диапазон излучения - микроволновый. Если зона обнаружения у ИК-датчика - с диаметром луча в 1-2 см, радиолу ч имеет вид вытянутого эллипсоида, диаметр которого в середине зоны составляет от 80 до 500 см в зависимости от размеров антенны и частоты излучения. Объемная зона обнаружения является несомненным достоинством датчика, ее труднее преодолеть без сигнала тревоги. На работоспособность радиолучевых средств практически не влияют дождь, туман, ветер, однако они требуют при эксплуатации наличия геометрически свободного пространства между излучателем и приемником и перестают работать при образовании сугробов, "затеняющих" луч.

Вибрационные системы обнаружения

Еще один класс систем - вибрационные (воспринимающие вибрацию элементов ограждения или их деформацию при попытке преодоления). Как правило, вибрационные системы используют в качестве чувствительного элемента трибоэлектрический, электретный, магнитострикционный или оптоволоконный кабель, закрепляемый по верху ограждения и в его средней части. Деформация кабеля (его смещение на 1-2 см), а также колебания ограждения вызывают появление избыточных зарядов в трибоэлектрическом или электретном кабеле или изменение характеристик лазерного излучения, распространяющегося в оптоволоконном кабеле. Очевидно, что вибрационные системы подвержены воздействию самых разнообразных помех (ветер, микросейсмические сотрясения почвы от проезда транспорта, град и т.п.). Поэтому для усиления помехоустойчивости используются сложные алгоритмы распознавания, реализуемые с помощью встроенных микропроцессоров.

Проводно-волновая система обнаружения

Разновидность средств сигнализации радиотехнического типа - так называемая проводно-волновая система, в качестве чувствительного элемента которой используется двухпроводная "открытая антенна", размещаемая по верху ограждения с помощью изолирующих кронштейнов. К одному концу антенны подключается УКВ-генератор, к другому - приемник. Вокруг проводов образуется электромагнитное поле, формирующее зону обнаружения диаметром 0,5-0,7 м. При появлении человека внутри нее уровень сигнала на входе приемника изменяется и вызывает сигнал тревоги. Антенная система в отличие от емкостных датчиков не требует применения специальных переходников-изоляторов, допускает значительное провисание проводов.

В начале 80-х годов были разработаны первые образцы систем обнаружения, использующих в качестве чувствительного элемента коаксиальный кабель, металлическая оплетка которого по всей длине имеет перфорацию (отверстия) или специально прорежена. Система состоит из двух параллельных кабелей, размещаемых в грунте на глубине 0,2-0,3 м вдоль охраняемого периметра при расстоянии между кабелями 2-2,5 м. К одному из них подключается генератор УКВ-диапазона, к другому - приемник. За счет отверстий часть энергии из генераторного кабеля поступает на приемный, формируя зону обнаружения шириной 3-3,5 м и высотой 0,7-1 м. Система такого типа получила название линии вытекающей волны, она полностью маскируется и может быть обнаружена только с помощью специальной аппаратуры. Ее применение имеет смысл, если использование пассивного заграждения по какимлибо причинам невозможно. Система надежно работает в условиях замерзшего грунта, травы, невысоких кустов, снежного покрова.

Сейсмические системы обнаружения

К классу пассивных маскируемых средств обнаружения относятся также сейсмические системы, представляющие собой множество геофонных датчиков, соединенных в "косу" и размещенных в земле на глубине 0,2-0,3 м. При пересечении такого рубежа возникают микросейсмические колебания грунта при каждом шаге человека. Они воспринимаются геофонами, преобразуются в электрический сигнал и после соответствующей обработки (подсчет числа шагов, частотная фильтрация и т.д.) вызывают срабатывание системы. Более помехоустойчива модификация такого средства с чувствительным элементом в виде протяженного шланга, заполненного незамерзающей жидкостью и подключенного к мембранному датчику давления. При появлении человека непосредственно над шлангом за счет изменения давления возникает сигнал тревоги. Система имеет более узкую зону обнаружения (2-3 м) с резко спадающей чувствительностью на ее границе, за счет чего повышается помехоустойчивость. Однако эти системы не получили широкого распространения, так как достигнутая помехоустойчивость все еще не устраивает потребителей.

Магнитометрическая система обнаружения

В ряде случаев может представлять интерес магнитометрическая система обнаружения с чувствительным элементом в виде многопроводного кабеля, размещаемого в грунте на глубине 0,15-0,2 м вдоль охраняемого участка. Все жилы кабеля соединены последовательно, образуя распределенную индуктивную "катушку". Электронный блок измеряет эту индуктивность и выдает сигнал тревоги при ее изменении, связанном с пересечением зоны человеком, имеющем при себе какие-нибудь металлические предметы (огнестрельное или холодное оружие, предметы экипировки и т.д.). Чувствительность системы достаточна для обнаружения магнитной массы, характерной для обычного пистолета и тем более для автомата или карабина. В то же время система не реагирует на пересечение зоны такими животными, как кабаны, зайцы, собаки и кошки. Она перспективна для охраны границ или в условиях северных районов нефтедобычи, где неизбежны миграции диких животных.

Комбинированная система обнаружения

Для особых объектов, где требуется исключительно высокая наработка на ложное срабатывание и вероятность обнаружения, ГУП СНПО "Элерон" разработало комбинированную систему, сочетающую в себе несколько датчиков различного физического принципа действия. Расположение чувствительных элементов выбирается таким образом, чтобы сигнал от проникновения человека возникал одновременно в нескольких датчиках, тогда как помехи, оказывающие разное воздействие на каждый их них, разнесены во времени. Это система "Протва-4", сочетающая в себе приборы трех принципов действия - сетчатое ограждение с трибоэлектрическим кабелем, реагирующем на вибрации, радиолуч, направленный параллельно сетке, и датчик на основе "линии вытекающей волны", размещаемый в грунте в непосредственной близости от сетчатого заграждения. Электронный блок обрабатывает сигналы от каждого датчика в соответствии с логической схемой "2 из 3", то есть сигнал тревоги формируется только при одновременном срабатывании любых двух датчиков, входящих в систему. Это обеспечивает резкое (на порядок) снижение частоты ложных срабатываний, сохраняя высокую вероятность обнаружения.

Разработанные и серийно выпускаемые ГУП СНПО "Элерон" периметровые средства обнаружения

Перед Вами краткое описание разработанных и серийно выпускаемых ГУП СНПО "Элерон" периметровых средств обнаружения.

"Родиан-14"

Емкостное периметровое средство обнаружения "Радиан 14"- последняя модификация хорошо известного семейства емкостных сигнализаторов для охраны периметра. Оно разработано в 1997 г. на основе изучения опыта длительной эксплуатации аналогичных приборов "Радиан-М" и "Радиан-13" и воплотило в себе достижения схемотехники, современных алгоритмов обработки сигналов и новой элементной базы.

Принципиальное отличие прибора "Радиан-14", позволившее значительно повысить его помехоустойчивость, заключается в применении двухканальной схемы обработки сигнала и алгоритма "компенсации". Суть ее в том, что помеховый сигнал в резистивном канале вычитается из сигнала в емкостном канале и препятствует ложному срабатыванию. Схема построена таким образом, что пороговое устройство реагирует только на одну полярность, соответствующую сигналу в емкостном канале. Поэтому помеховый сигнал в резистивном канале, какой бы большой величины он не был, может только компенсировать емкостную составляющую и не вызовет срабатывания порогового устройства.

Частая причина ложных срабатываний - воздействие импульсных электрических помех и особенно радиопомех, характерных для городских условий интенсивного "радиосмога". В новом приборе импульсные радиопомехи возникают строго одновременно в обоих каналах и тем самым компенсируются (вычитаются), что препятствует ложному срабатыванию. Таким образом, "Радиан-14" обладает следующими преимуществами:

Высокая помехоустойчивость к дождю, мокрому снегу, загрязненным изоляторам и т.п.;

Высокая защищенность от индустриальных электро-и радиопомех.

Это позволило добиться почти на порядок большего времени наработки на ложную тревогу - 2000 ч (вместо 250 ч в приборе "Радиан-М").

Кроме того, введение компенсирующего канала позволило отказаться от обязательного использования специальных изоляторов-переходников, а также охранного электрода. Для монтажа прибора "Радиан-14" можно применять обычные изоляторы, используемые в электрических установках. Это резко удешевляет всю систему, дает большие возможности для конструкторских и дизайнерских решений по улучшению внешнего вида и маскировки антенной системы. Разработан вариант антенной козырьковой системы, включающий в себя элементы установки (пластмассовые кронштейны, стальной провод, крепеж) и поставляемый вместе с электронным блоком - средство "Ярус".

"Радиан 14" выполнен в том же корпусе, что и "Радиан-13", имеет те же конструктивные и стыковочные параметры. Это позволяет легко провести замену старого прибора на новый, причем не требуется перемонтаж антенной системы, питающих и сигнальных линий.

"Дельфин М"

Вибрационное кабельное средство обнаружения "Дельфин-М" состоит из протяженного чувствительного элемента в виде специального трибоэлектрического кабеля и электронного блока усиления и обработки сигнала. Кабель крепится к пассивному ограждению из металлической сетки и преобразует ее вибрацию, создаваемую нарушителем, в электрический сигнал, который после обработки в электронном блоке формирует сигнал тревоги.

"Дельфин-М" способен надежно функционировать в условиях воздействия сильного ветра, снега, гололеда, дождя и т.д. и индустриальных помех (близкого проезда транспорта, ЛЭП, работы радиостанций). Он выдает сигнал тревоги при попытках человека перелезть через ограждения, повредить сетку, перекусить проволоку, перерезать кабель и т.д.

Средство обнаружения "Дельфин-М" широко используется для блокирования АЭС, промышленных предприятий, банков, административных зданий.

В качестве чувствительного элемента (ЧЭ) вибромагнитометрического средства обнаружения "Дрозд" используется система изолированных проводов, закрепляемых на пассивном ограждении на всем протяжении участка периметра. При преодолении ограждения нарушитель вызывает его вибрацию (избыточные шумы), которые, в свою очередь, приводят к колебанию проводов ЧЭ в постоянном магнитном поле Земли и генерацию электрических сигналов. Они поступают на схему обработки электронного блока прибора и при выполнении определенных заданных критериев обнаружения вызывают срабатывание выходного реле тревоги.

СО "Дрозд" может устанавливаться на следующих типах пассивных ограждений (заборов): бетонных, кирпичных, деревянных, металлических сетчатых (сетка "Рабица"), а также садовой ограде из штампованных, сварных или кованых металлических элементов.

Средство обнаружения "Дрозд" имеет ряд преимуществ перед известными периметровыми системами:

По сравнению со средством "Дельфин М" не требует для козырькового варианта обязательного использования металлического сетчатого ограждения, что снижает его стоимость. Кроме того, использование дешевого провода П-274 ("полевка") вместо специального трибоэлектрического кабеля также удешевляет систему;

По сравнению со средством "Радиан" не требует для крепления проводов "козырька", обязательного применения дорогих переходников-изоляторов;

Большая универсальность использования позволяет применять его практически на всех типах заборов, а также для защиты эстакад, стен и крыш зданий;

Высокая помехоустойчивость: на работу прибора практически не оказывают влияние дождь, снег, туман, высокая трава или ветви деревьев в непосредственной близости от чувствительного элемента (допускается переплетение проводов ЧЭ вьюном, плющом и т.п.);

Оригинальные технические решения обеспечивают устойчивость к электромагнитным помехам промышленного происхождения (патент Российской Федерации № 2075905 от 20.03.97 г.).

Двухпозиционное радиолучевое средство обнаружения РЛД-94 состоит из передатчика и приемника СВЧ-энергии, устанавливаемых на специальных опорах по краям линии блокирования. Антенна передатчика излучает поток СВЧ-энергии, направленный на антенну приемника. Появление в зоне обнаружения нарушителя вызывает модуляцию принимаемого сигнала. После соответствующей обработки в электронном блоке сигнал включает выходное реле.

Радиоволновое двухпроводное средство обнаружения "Уран-М" предназначено для блокирования верха пассивных ограждений (бетонных, кирпичных, металлических), а также крыш и стен зданий.

Чувствительная зона СО образуется двумя параллельными проводами, закрепляемыми по верху ограждения с помощью непроводящих кронштейнов, выполненных из пластика или дерева. Расстояние между проводами -0,4-0,5м, длина блокируемого участка периметра -от 20 до 250 м.

С одной стороны участка к проводам подключается генератор зондирующих радиоимпульсов, с другой - приемник. Два провода выполняют роль "открытой антенны". При появлении человека в зоне чувствительности антенны происходит изменение уровня сигнала на входе приемника за счет поглощения и переизлучения энергии, что и является признаком нарушения. Сечение зоны чувствительности представляет собой овал с размерами 0,7х0,4 м. Основные достоинства СО "Уран-М":

Возможность отслеживания рельефа рубежа охраны (ограждения) - повороты, перепады по высоте и т.д. и, как следствие, уменьшение общего количества электронных блоков;

Равное сечение зоны обнаружения вдоль всего участка блокирования;

Простота монтажа и обслуживания линейной части СО;

Достаточно высокая помехоустойчивость как к метеофакторам, так и к индустриальным помехам.

Маскируемое радиотехническое средство защиты периметра на основе "линии вытекающей волны" "Бином-М" использует в качестве чувствительного элемента коаксиальный кабель, металлическая оплетка которого по всей длине имеет перфорацию. Средство состоит из двух параллельных кабелей, размещаемых в грунте на глубине 0,2-0,3 м вдоль охраняемого периметра при расстоянии между кабелями 2- 2,5м. К одному из них подключается генератор УКВ-диапазона, к другому - приемник. За счет наличия отверстий часть энергии из генераторного кабеля поступает на приемный, формируя зону обнаружения шириной 3-5 м и высотой 0,7-1 м. "Бином-М" следует применять, если использование пассивного заграждения по каким-либо причинам невозможно, а также если требуется полная маскировка СО. Система надежно работает в условиях замерзшего грунта, травы, невысоких кустов, снежного покрова. Длина участка блокирования - до 250 м, питание от сети постоянного тока 20-30 В, потребляемая мощность - не более 0,7 Вт.

"Протва-4М"

Комбинированная периметровая система "Протва-4М" - современное высокоэффективное средство обнаружения для защиты периметров особо важных объектов и протяженных рубежей с повышенными требованиями к надежности охраны.

Высокая эффективность системы обеспечивается за счет совместного использования трех средств обнаружения, построенных на различных физических принципах и объединенных в единую систему с применением логической схемы "2 из 3". Совмещение зон обнаружения обеспечивает срабатывание как минимум двух средств при любом способе преодоления человеком блокируемой зоны. В то же время ложное срабатывание одного из средств не вызывает срабатывания всей системы. Применение этого принципа построения позволяет на порядок увеличить время наработки на ложное срабатывание (до 5000 ч) и ставит СО вне конкуренции с любыми другими периметровыми системами.

Кроме того, система "Протва-4М" обладает уникальным свойством указывать направление движения нарушителя (на объект или из него).

В состав системы входят следующие три различных средства обнаружения:

Двухпозиционное радиолучевое средство (с несущей частотой 735 ГГц);

Радиотехническое средство обнаружения на основе углубленных в грунт кабелей с перфорацией оплетки ("линия вытекающей волны");

Вибрационное средство на основе трибоэлектрического кабеля, закрепленного на металлическом сетчатом ограждении.

Наряду с линейными средствами обнаружения в "Протва-4М" входит микропроцессорный пульт управления и индикации (ЛУИ-12), объединяющий в себе все линейные блоки. Он осуществляет управление всей системой и индикацию тревожной и служебной информации. ПУИ-12 позволяет подключить ЭВМ с отображением на экране монитора графического изображения блокируемого рубежа объекта.

Сейсмомагнитометрическое средство обнаружения "Дуплет" - уникальное периметровое средство обнаружения, не имеющее аналогов ни у нас в стране, ни за рубежом! Единственное средство, позволяющее отличить человека (вооруженного нарушителя) от животных, в том числе крупных.

"Дуплет" может использоваться для охраны (сигнализационного блокирования) периметров объектов, не имеющих ограждения, или выступать в качестве предварительного выдвинутого сигнализационного рубежа охраны. Лучше всего применять его на объектах, где невозможно исключить миграции животных.

Принцип работы "Дуплета" основан на регистрации посредством кабельного чувствительного элемента как сейсмических сигналов (колебаний грунта), возникающих при передвижении человека, так и изменений магнитного поля в ближней зоне при перемещении ферромагнитных масс, например, оружия. Эти сигналы преобразуются в электронных блоках в электрические и после обработки по определенному алгоритму вызывают срабатывание выходного реле тревоги. В качестве чувствительного элемента используется специально разработанный кабель КТПЭДЭП 10х2х0,5, основная особенность которого - наличие двух экранов, предназначенных для формирования сигнала сейсмоканала. Внутренние провода объединяются в петлю, реагирующую на магнитную составляющую сигнала.

СО устойчив к воздействию таких природных факторов, как всевозможные типы осадков, мелкие и средние животные, а также к воздействию транспортных и индустриальных помех.

Быстроразвертываемые средства обнаружения

Быстроразвертываемое радиолучевое средство "Витим" предназначено для срочной организации временного рубежа охраны на неподготовленной территории. Оно состоит из II приемно-передающих устройств в виде стоек. Такая конструкция позволяет быстро устанавливать их на любом грунте. Кроме того, "Витим" включает в себя выносной блок индикации, показывающий номер сработавшего участка. Каждая стойка и блок индикации имеют встроенные аккумуляторные источники питания. При пересечении нарушителем зоны обнаружения в виде вытянутого эллипсоида между стойками со скоростью от 0,1 до 6 м/с СО формирует сигнал тревоги и указывает на блоке индикации номер сработавшего участка. Сигналы тревоги передаются по радиолучу, поэтому не требуются кабельные соединения. Это обеспечивает высокую скорость установки системы: в течение часа группа из трех человек может установить и наладить систему. Расстояние между стойками 20-120 м, максимальная протяженность рубежа охраны - 1200м.

СО "Витим" не имеет зарубежных аналогов и постоянно вызывает интерес на международных выставках.

Радиоволновое средство обнаружения "Газон" предназначено для блокирования участков периметра временных объектов на неподготовленной местности с растительностью и сложным рельефом и конфигурацией рубежа, а также для блокирования верха заграждений из металла (решетки, сетки).

Изделие предназначено для работы в автономном режиме или с системой сбора и отображения информации. В автономном режиме "Газон" питается от аккумуляторной батареи 10НКГЦ-1Д, а индикация срабатываний функционирует с помощью встроенного звукового или внешнего индикаторов, управляемого контактами выходного реле.

Изделие состоит из блока электронного (БЭ)и проводной линии, размещаемой вдоль блокируемого участка и подключаемой к БЭ. Проводная линия создается с помощью комплектов монтажных частей (КМЧ). КМЧ для грунта и асфальта содержит диэлектрические стойки, устанавливаемые с интервалами 6-7 м. На стойках на высоте около 1,5м закрепляется верхний провод линии, нижний прокладывается под верхним по земле или закапывается на небольшую глубину (3-5 см). Зона обнаружения формируется между верх- " ним проводом и поверхностью земли.

Длина блокируемого рубежа при установке на земле - 40-125 м, на заграждении - 40-250 м, ширина зоны обнаружения (на земле)-не более 3 м.

Напряжение питания 10,2-15В или 20- 30 В. Ток, потребляемый в дежурном режиме, при напряжении 12 В не более 25 мА.

Маскируемый проводно-обрывной сигнализатор ТРОС-1 предназначен для оперативной организации рубежа охраны мест временного расположения людей, техники, грузов, объектов или прилегающей к ним территории.

Принцип действия - регистрация целостности электрической цепи, образованной двухжильным микропроводом. Обрыв провода при вторжении нарушителя вызывает появление звукового сигнала. Благодаря малому диаметру провода достигается высокая степень маскировки на местности и высокая вероятность обнаружения. Развернутый на местности микропровод повторно не используется.

Максимальная протяженность охраняемого рубежа - 1,5 км. Он комплектуется двумя кассетами провода. Напряжение питания (батарея) - 1,5В. Время непрерывной работы без смены источника питания - не менее 6 месяцев. Диапазон рабочих температур от -50 до +50°С. Габариты (диаметр, длина) 53х260 мм.

Таким образом, ГУП СНПО "Элерон" создана широкая номенклатура периметровых средств обнаружения, позволяющих решать самые разнообразные задачи по охране практически любых объектов.

Реферат

На тему

Радиоволновые и радиолучевые средства обнаружения


1. Назначение, виды и основные характеристики радиоволновых и радиолучевых средств обнаружения


Радиоволновые и радиолучевые средства обнаружения получили широкое распространение при защите периметров объектов и организации скрытых или маскируемых рубежей охраны в помещениях.

Различие между радиоволновыми и радиолучевыми средствами обнаружения состоит в способе формирования чувствительной зоны СО: РВСО использует ближнюю зону распространения радиоволн; РЛСО - дальнюю зону, т.е. более 100.

Чувствительная зона СО - это участок или объект, появление в котором объекта обнаружения вызывает возникновение полезного сигнала с уровнем, превышающим уровень шума или помехи.

Внутри зоны чувствительности располагается зона отчуждения

Это зона, появление в которой людей, техники или других объектов обнаружения может привести к превышению полезным сигналом порогового значения и выдаче СО сигнала "Тревога".

Внутри зоны отчуждения располагается зона обнаружения СО

Зона, где СО обеспечивает заданную вероятность обнаружения.

Вероятность обнаружения - это вероятность того, что СО выдаст обязательно сигнал "Тревога" при пересечении или вторжении в зону обнаружения нарушителя, в условиях и способами, оговоренными в нормативной документации. Как правило, зарубежные фирмы указывают в качестве вероятности обнаружения СО несмещенную оценку вероятности обнаружения:



где N,«;n - число испытаний по преодолению зоны обнаружения СО; М - число пропусков нарушителя.

Например, если при пересечении ЗО в количестве 100 раз не было пропусков нарушителя, т.е. СО выдало 100 раз сигнал "Тревога", то про это СО можно сказать, что его вероятность обнаружения составляет 0,99.

В отечественной практике под вероятностью обнаружения, как правило, понимается нижняя граница доверительного интервала, в котором с доверительной вероятностью лежит истинное значение вероятности обнаружения.

То есть под вероятностью обнаружения понимается величина



где Р* - среднее частотное значение вероятности обнаружения, определяемое выражением



Коэффициент Стьюдента для данного числа испытаний

и выбранной доверительной вероятности.

"Полезным" называют сигнал, возникающий на выходе чувствительного элемента при преодолении или вторжении в зону обнаружения нарушителя.

Другим важным параметром СО является частота ложных срабатываний Nne . определяемая выражением:



где Тлс - время наработки на ложное срабатывание.

Доверительный интервал для оценки средней наработки на ложное срабатывание задается граничными значениями и Т2, определяемыми из соотношений:



где Тисп - продолжительность испытаний; N - число испытываемых образцов;- нижняя оценка параметра распределения Пуассона; - верхняя оценка параметра распределения Пуассона.

Помеховым сигналом называется зависимость электрической величины от времени на выходе ЧЭ СО при воздействии на него возмущающих факторов любой природы, не связанных с вторжением или преодолением объектами обнаружения зоны обнаружения.

Возмущающим воздействием называется воздействие на ЧЭ СО, являющееся причиной возникновения помехи или искажающее форму полезного сигнала.

Примером возмущающего воздействия могут служить: порыв ветра, снег, дождь; кошки, собаки, перемещающиеся в чувствительной зоне; транспорт, перемещающийся вблизи 43, и др.

Флюктуационной помехой называют помеху, являющуюся непрерывным случайным процессом, описываемым своими многомерными функциями распределения.

Импульсной помехой называют помеху, представляющую собой случайную последовательность импульсов, описываемую моментами появления импульсов и их видом.

Причиной пропуска полезного сигнала является маскирующее действие помехи, полностью или частично компенсирующей полезный сигнал, либо отсутствие в полезном сигнале характерных признаков, позволяющих отличить его от помехового сигнала, что приводит к несрабатыванию СО.

При определении вероятности обнаружения СО, выпускаемых в больших объемах, могут применяться методики, использующие кроме доверительного интервала и доверительной вероятности риск заказчика и риск изготовителя. Например, по отечественной методике аналогичное СО будет иметь вероятность обнаружения не более 0,9.

В зависимости от принципа действия различают активные или пассивные РВСО и РЛСО.

Пассивные РВСО и РЛСО используют собственное излучение объекта обнаружения или вызываемое им изменение электромагнитных полей внешних источников.

Активные РВСО и РЛСО используют собственный источник ЭМП для формирования чувствительной зоны.

Различают одно- и двухпозиционные РВСО и РЛСО:

Однопозиционные имеют общий блок приемопередатчика;

Двухпозиционные имеют разнесенные блоки передатчика и приемника.

Пассивные РЛСО применяются для обнаружения нарушителей, имеющих собственное электромагнитное излучение.

Форма чувствительной зоны для пассивных РВСО определяется формой диаграммы направленности антенны. В первом случае она, как правило, круговая, а используемый диапазон лежит в пределах 10 Гц...10 ГГц. Во втором случае, как правило, чувствительная зона имеет лучевую форму и используются метровый и дециметровый диапазоны.

Активные однопозиционные РЛСО включают в себя:

Однопозиционную РЛС;

Нелинейный радиолокатор;

Однопозиционное микроволновое СО.

Однопозиционные РЛС метрового, дециметрового, сантиметрового и миллиметрового диапазонов применяются для контроля территории, прилегающей к особо важным объектам, охраны береговой полосы, прибрежной зоны и ближней разведки в условиях боевых действий. Различают стационарные, мобильные и носимые РЛСО.

Нелинейный радиолокатор использует широкополосный сигнал специальной формы и предназначен для обнаружения человека за неподвижными физическими преградами и укрытиями.

Однопозиционные микроволновые СО используют для временного блокирования разрывов в заграждении, охраны объемов неотапливаемых помещений, входов в охраняемые здания, для перекрытия "мертвых зон" радиолучевых рубежей охраны периметров, организации скрытых рубежей блокирования в охраняемых помещениях.

Примечание: "Мертвой зоной" называется пространство между СО и 30 или разрывы в 30, где вероятность обнаружения меньше заданной.

Данные СО работают в дециметровом, сантиметровом и миллиметровом диапазонах. Для обнаружения используется изменение расположения стоячих волн в охраняемом объеме при появлении объекта обнаружения, либо проявление эффекта Доплера при движении объекта обнаружения.

Двухпозиционные РЛСО работают в дециметровом, сантиметровом и миллиметровом диапазонах и используются для блокирования периметров объектов, мест временного расположения войсковых подразделений, грузов и т.п. Полезный сигнал формируется за счет изменения объектом обнаружения сигнала связи на входе приемника.

Двухпозиционные РВСО работают в декаметровом, метровом и дециметровом диапазонах длин волн и используются для блокирования периметров объектов и организации скрытых рубежей охраны. В качестве антенных систем здесь применяются радиоизлу-чающие кабели, другое название - линия вытекающей волны, а также кусочно-ломаные двух- и однопроводные линии.

В данную классификацию не вошли некоторые СО, являющиеся комбинацией нескольких СО, и еще только разрабатываемые РЛСО с синтезированной апертурой.


2. Передатчик, антенная система и приемник как блок формирования полезного сигнала


Пусть имеется РЛСО с антенной системой, состоящей из двух одинаковых антенн с размерами DB по вертикали и Dr по горизонтали, установленных на высоте НА от поверхности земли параллельно забору на расстоянии А от него и на расстоянии L друг от друга. Диаграмма направленности антенны определяется углами в вертикальной и горизонтальной плоскостях соответственно.

При этом возможны следующие случаи: - антенную систему можно рассматривать как состоящую из точечных антенн, если выполняются условия:



Антенную систему необходимо рассматривать как имеющую конечный размер, если приведенные выше условия не выполняются.



Мощность, излучаемая передающей антенной РИзл. связана с мощностью, наводимой в приемной антенне РПр, при расположении антенн в свободном пространстве выражением:



где- длина волны РЛСО;- коэффициент усиления антенны.

Влияние подстилающей поверхности на работу РЛСО показано на рис. 3.2. При увеличении расстояния L между антеннами принимаемый сигнал имеет колебательный характер и затухает. При увеличении высоты подвеса антенн НА принимаемый сигнал имеет колебательный характер и возрастает, стремясь к значению принимаемого сигнала для свободного пространства. Аналогичная картина наблюдается и при увеличении расстояния А до протяженного предмета - забора, стены.


Известно, что при распространении радиоволн от передающей к приемной антенне образуется сложная интерференционная картина. Для большинства РЛСО и большой протяженности зоны обнаружения справедливо условие дифракции Френеля.

Известно также, что область ВЧ-рассеяния по отношению характерного размера объекта D к радиусу первой зоны Френеля Ri подразделяется следующим образом:



Процесс сигналообразования в РЛСО происходит следующим образом. Человек - нарушитель при движении поперек участка последовательно перекрывает зоны Френеля.

При этом человек с высокой степенью точности моделируется при перемещении в "рост" и "ползком" прямоугольником с габаритами человека, при перемещении "согнувшись" - двумя прямоугольниками. Радиус m-ой зоны Френеля




а наибольший радиус зоны Френеля, определяющий ширину зоны обнаружения, составляет



Соответственно, отношениевыражается через расстояние от точечного источника электромагнитного поля до объекта п, расстояние от объекта до точки наблюдения г2 и длину волныследующей формулой:



Основные параметры человека, влияющие на параметры полезного сигнала, показаны на рис. 3.4.

Чтобы уменьшить мертвую зону при обнаружении ползущего человека, необходимо устанавливать большую антенну.

В соответствии с размерами животных, обитающих на данном объекте, и их возможными путями продвижения определяется уровень помеховых импульсных сигналов.

Другой тип помехи - от подстилающей поверхности. Общие требования к РЛСО по подстилающей - поверхности следующие:

Неравномерность поверхности не более 20 см;

Трава и снежный покров - свыше 30 см.

Полоса частот полезного сигнала определяется минимальной и максимальной шириной зоны чувствительности, а также минимальной и максимальной скоростью передвижения нарушителя. Соответственно для конкретного средства обнаружения при уменьшении длины участка блокирования возможно обнаружение более медленно движущегося нарушителя.



Для обеспечения совместной работы нескольких средств применяется амплитудная модуляция зондирующего сигнала разными частотами. Временное разделение, требующее взаимной синхронизации, применяется редко.

Для уменьшения влияния изменений состояния подстилающей поверхности на уровень полезного сигнала в РЛСО применяются АРУ или логарифмический усилитель.

В современных РЛСО, использующих цифровые методы обработки, как правило, имеется возможность настройки на длину блокируемого участка и максимальную и минимальную скорость движения нарушителя.

3. О двух подходах к построению РВСО


РВСО строятся на основе одно- или двухпроводных линий и радиоизлучающих кабелей. Одно- и двухпроводные линии применяются в контактных средствах при блокировании верха заграждения. Характеристики проводной линии очень сильно зависят от состояния подстилающей поверхности.

Для всех РВСО характерна неравномерность чувствительности вдоль рубежа охраны. Для ее выравнивания в двухпроводных линиях применяется изменение начальных условий формирования стоячих волн в линиях.

Для компенсации неравномерности чувствительной зоны РВСО были предложены и применяются различные методы, как-то:

Зондирование ЛВВ радио- и видеоимпульсами;

Зондирование ЛВВ сигналом с линейно-частотной модуляцией;

Зондирование ЛВВ многочастотным сигналом, в том числе с переключением частот;

Переключение нагрузки кабелей;

Переключение передающего и приемного кабелей;

Использование двух приемных кабелей, разнесенных на местности.

Существующие РВСО ЛВВ и применяющиеся в них методы выравнивания чувствительности можно разделить на две группы:

1. РВСО ЛВВ с односторонним включением передатчика и приемника. Для выравнивания чувствительности применяются импульсные зондирующие сигналы, при этом неравномерность чувствительности уменьшается за счет разбиения 43 на элементарные участки малой длины.

2. РВСО ЛВВ со встречным включением передатчика и приемника. Неравномерность чувствительности уменьшается за счет многоканальной обработки сигналов. Для формирования двух и более реализаций ФЧ используются различные способы: два разнесенных приемных кабеля, переключение нагрузки кабелей, переключение передающего и приемного кабелей, многочастотные зондирующие сигналы и т.д.

Рассмотрим первую группу способов. Использование радиоимпульсов с частотой заполнения около 60 МГц позволяет получить элементарные участки длиной около 30 м, что не обеспечивает компенсацию низкочастотной и высокочастотной гармоник для всех типов фунтов. Данное средство применяется для блокирования рубежей в пустынных и полупустынных районах США, Канады и Израиля, где период низкочастотной пространственной гармоники более или менее соизмерим с величиной элементарного участка.



Можно доказать, что при использовании большого числа зондирующих частот в диапазоне 30...90 МГц возможна компенсация неравномерности чувствительности до уровня 2...3 дБ. В литературе описано большое число эмпирических алгоритмов обнаружения: с логической обработкой каналов по схеме М из N, с перемножением текущих значений сигналов, с суммированием квадратов текущих значений сигнала и т.д. Показано, что многочастотные методы позволяют не только получить высокую равномерность чувствительности по длине рубежа, но и при необходимости разработать алгоритм управления формой 43 РВСО ЛВВ, например, получать 43 шириной от 1 до 8 м.

Зону обнаружения, показанную на рис. 3.6 можно представить в виде четырехполюсника, эквивалентная электрическая схема которого приведена на рис. 3.7.



Рассмотрим коэффициент передачи четырехполюсника по напряжению. Для внутренних токов и напряжений при определении Ки лучше воспользоваться параметрами четырехполюсника типа А, для которого



гдеотношение напряжений при разомкнутых выходных контактах четырехполюсника;



величина, обратная передаточной проводимости при закороченных выходных зажимах;



При согласованной нагрузке. Тогда, подставив значения ZH и Z2 в, получим:



Для рассматриваемых случаев, когда, слагаемым Zw в знаменателе можно пренебречь. Тогда получаем:



Для излучающего кабеля Zw = const, поэтому все изменения коэффициента передачи будут зависеть от изменения сопротивления связи Z.

Рассмотрим изменения передаточной проводимости среды в поперечном разрезе схемы зоны взаимодействия ЛВВ, показанном на рис. 3.8.

Так как приемная и передающая линии располагаются по разные стороны границы раздела земля/воздух, то сопротивление связи можно разбить на две составляющие: Z - сопротивление связи воздушного пространства и Zy - сопротивление связи грунта. Тогда Сопротивление связи грунта можно представить как



где Zro = const Gf - коэффициент, зависящий от типа грунта и его влажности.



Из выражений и имеем



При попадании нарушителя в зону взаимодействия ЛВВ возникает неоднородность, которая меняет сопротивление связи Zc. Причем, если неоднородность появляется в воздушном пространстве, то меняется сопротивление ZB, а сопротивление Zr при этом остается неизменным:



где m - коэффициент модуляции сопротивления связи воздушного пространства. Отсюда



Для излучающих кабелей коэффициент модуляции входного сигнала М будет пропорционален коэффициенту модуляции сопротивления связи:



Как показал анализ других вариантов взаимного расположения кабелей, рассмотренный выше вариант обладает рядом преимуществ:

Меньшая зависимость от состояния грунта;

Большее отношение сигнал/помеха.

Анализ поля излучающего кабеля показывает наличие двух волн, распространявшихся с разными фазовыми скоростями внутри кабеля и по внешней поверхности кабеля. Более точное решение показало, что кроме указанных двух типов волн должны присутствовать и другие пространственные компоненты.

Если провести подробный анализ продольной и поперечной составляющих напряженности электрического поля вдоль кабеля, то краткое резюме из него сведется к следующему.

Составляющие электромагнитного поля излучающего кабеля во внешней среде содержат несколько компонентов, отличающихся коэффициентом распространения или фазовой скоростью.

Основной пространственный компонент поля обусловлен внутренней Т-волной, вытекающей через щели. Этот компонент, выражаемый множителем, не зависит от электрических свойств среды. Второй компонент, выраженный в виде



является аналитическим представлением поверхностной волны. Третий компонент



является аналитическим представлением пространственной волны. Ее фазовая скорость определяется электрическими параметрами диэлектрической оболочки кабеля. Четвертый компонент



является пространственной волной и ее фазовая скорость полностью определяется электрическими параметрами внешней среды. Величины в приведенных выражениях fj обозначают:

m - коэффициент модуляции сопротивления связи воздушного пространства;

d - шаг перфорации внешнего электрода кабеля; k - const;

Z - координата пересечения рубежа охраны; hp, Pl р2 - коэффициенты фазы.

Суммарное продольное электрическое поле кабеля представляет собой сумму биений основного компонента со вторым, третьим и четвертым компонентами. Результирующее поле должно иметь довольно сложный характер. Первым недостатком этой модели излучающей структуры является то, что в результирующем выражении для продольной составляющей напряженности электрического поля отсутствует дискретный спектр пространственных гармоник, обусловленный дискретным распределением излучающих щелей.

Кроме того, из полученного выражения можно сделать неверный вывод о том, что продольное распределение основной гармоники не зависит от координаты Z. Вместе с тем, эта модель точнее других отражает распределение поля вдоль излучающего кабеля и позволяет объяснить появление второй пространственной гармоники в функции неравномерности чувствительности СО. Однако получить значения амплитуд и коэффициентов затухания пространственных гармоник теоретическим путем до настоящего времени не удалось. Также неизвестна зависимость убывания амплитуд гармоник в радиальном направлении, что не позволяет сделать вывод о значении коэффициента передачи системы передающий - приемный кабели при ее расположении в различных средах.

Приведенные в литературе результаты экспериментальных исследований показывают, что неравномерность распределения поля вдоль излучающего кабеля может достигать 50 дБ.

При использовании режимов короткозамкнутой нагрузки или холостого хода, а также неполном согласовании нагрузки с волновым сопротивлением кабеля следует учитывать и встречный поток энергии, создаваемой отраженной волной. Накладываясь друг на друга, прямая и отраженные волны будут также создавать стоячую волну и результирующая картина поля вдоль кабеля еще более усложнится.

Если учитывать только отражение от несогласованной нагрузки и пренебрегать затуханием волны вдоль кабеля, то результирующая напряженность поля вдоль кабеля может быть представлена в виде суммы прямойи отраженнойволн.

При этом прямая и отраженная волны определяются выражениями:



где А, В, С, D - амплитуды пространственных волн;- коэффициенты распространения волн; р - коэффициент отражения.

Принимая во внимание четность косинусоидальной функции, продольное распределение результирующего поля кабеля можно выразить в виде:



На основании изложенного можно утверждать:

Результирующая картина поля вдоль излучающего кабеля является суперпозицией по меньшей мере четырех типов волн;

Неравномерность напряженности поля вдоль кабеля составляет в одночастотном режиме до 40 дБ;

Подстилающая поверхность оказывает определённое влияние на распределение поля и коэффициент связи между кабелями.

Вместе с тем следует отметить, что практический интерес представляет комплексный коэффициент передачи системы передающий - приемный кабели и его изменения при проходе человека. Теоретическим путем получить такую зависимость до настоящего времени не удалось. Поэтому построена модель функции чувствительности РВСО ЛВВ. Под ФЧ подразумевается зависимость максимальной амплитуды полезного сигнала при проходе человека через чувствительную зону РВСО ЛВВ от координаты места пересечения рубежа и частоты зондирующего сигнала, т.е. ФЧ = F, где Z - координата пересечения рубежа, f - частота зондирующего сигнала.

Определить ФЧ можно двумя принципиально разными способами:

Во-первых, посредством параллельных проходов чувствительной зоны с интервалом 0,7... 1 м. Величина интервала определяется габаритами и точностью движения человека поперек к линии кабеля;

Во-вторых, выполняется один проход вдоль линии кабеля, непосредственно под излучающим кабелем. Проведение многократных поперечных проходов одного человека через 0,7 м на участке длиной 125 м - чрезвычайно трудоемкое дело. В самом деле, измерение значений ФЧ в 179 точках потребует проведения от 4500 до 6000 пересечений рубежа. За время проведения такой серии экспериментов из-за влияния климатометеорологических факторов значения параметров сигналов существенно изменятся, что обесценит результаты проделанной работы.

Для другого способа неточность траектории передвижения человека вдоль кабеля и, в равной мере, невозможность точного определения линии закладки приемного кабеля могут привести к значительным систематическим ошибкам в определении ФЧ при продольном проходе. Поэтому для постановки эксперимента была разработана и обоснована методика проведения записи сигналов при продольном проходе.

Визуальный анализ пространственного спектра Фурье ФЧ показывает наличие двух ярко выраженных гармонических составляющих с периодами 14...17 и 1,5...2,5 м, характерных для любых частот зондирующего сигнала. Возникает важный вопрос: являются ли обнаруженные пространственные гармоники одинаковыми для всех частот сигнала? Если пространственные частоты не одинаковы, то можно компенсировать неоднородности за счет использования нескольких специально подобранных зондирующих частот.

Таким образом, можно сделать вывод о том, что ФЧ описывается выражением вида:



где а и b - постоянные, определяющие амплитуды пространственных гармоник; f - частота зондирующего сигнала;- коэффициенты, определяющие зависимость периода пространственной гармоники от частоты зондирующего сигнала;- постоянные, определяющие взаимное расположение пространственных гармоник.

Важной задачей является оценка значений приведенных выше коэффициентов, их зависимости от состояния подстилающей поверхности и скорость изменения.

Полученные данные о значении периодов пространственных гармоник 14...17 и 1,5...2,5 м относятся к мокрому торфяному грунту. При подсыхании грунта значения периодов пространственных частот увеличиваются на 10... 15%. С учетом того, что мокрый торфяник имеет наибольшую диэлектрическую проницаемость по сравнению с другими грунтами, можно предположить, что полученные значения периодов пространственных частот являются нижними пределами их изменений.

Похожие рефераты:

Тема работы: тактика оснащения объектов периметральными системами охранной сигнализации связана с оснащением объекта ограждением. Технические средства и системы защиты внешнего периметра объекта. Типы периметральных систем охранной сигнализации.

Причины применения коллинеарной антенной решетки с последовательным возбуждением и ее расчет с использованием модели Маркони-Франклина. Определение характеристик излучающего элемента антенны. Оценка полученных результатов с помощью программы "SAR32".

Теоретические основы радиолокации. Формирование многочастотного сигнала. Многочастотная радиолокация целей. Способы обработки многочастотных сигналов. Помехозащищенность многочастотных РЛС. Преимущество радиолокационных средств по сравнению с оптическими.

Системы охранной сигнализации, учет специфики охраняемых объектов, определяемой концентрацией, важностью и стоимостью охраняемых материальных ценностей. Подгруппы охраняемых объектов. Термины и определения, используемые в системах охранной сигнализации.

Основные параметры антенны поверхностной волны и линии ее питания, разработка их эскиза в масштабе с указанием основных геометрических размеров и графики нормированных диаграмм направленности антенны. Расчет мощности, подводимой к антенне СВЧ генератором.

Основные задачи, стоящие перед радиолокационными станциями с селекцией движущихся целей. Методика оценки эффективности РЛС с СДЦ на основе сравнительного анализа вероятности правильного обнаружения с учетом влияния кривизны Земли и затухания радиоволн.

Радиолокационные станции управления воздушным движением. Разработка алгоритмов работы и структурных схем постановщика помех и устройств защиты станции, анализ эффективности комплекса. Расчёт параметров помехопостановщика и зон прикрытия помехами.

В работе рассмотрена тема характера воздействия помех на работу систем и принципов их защиты. Разделение помех на группы: шумы, мешающие излучения и мешающие отражения. Помехи и их классификация. Спектр шумов. Теория обнаружения. Функции времени.

Система уравнений, определяющая дальность действия вторичных радиолокаторов. Условия оптимальности данной системы с энергетической точки зрения. Расчет мощности передатчика и чувствительности приёмника ответчика, основные характеристики радиолокатора.

Изучение назначения волоконно-оптических кабелей как направляющих систем проводной электросвязи, использующих в качестве носителя информационного сигнала электромагнитное излучение оптического диапазона. Характеристика и классификация оптических кабелей.

Понятие и сущность пространственного сигнала в дальней зоне источника излучения. Принципы и характеристика пространственно-временной эквивалентности обработки сигналов. Случайный пространственный сигнал, его характеристика и особенности. Отражение шума.

Общая характеристика и сфера применения антенных решеток. Определение параметров и конструкции симметричных вибраторных антенн, описание способов их возбуждения. Расчет коллинеарной антенной решетки с параллельным возбуждением, построение диаграмм.

Радиоволновые и радиолучевые средства обнаружения получили широкое распространение при защите периметров объектов и организации скрытых или маскируемых рубежей охраны в помещениях.

Различие между радиоволновыми и радиолучевыми средствами обнаружения состоит в способе формирования чувствительной зоны СО: РВСО использует ближнюю зону распространения радиоволн; РЛСО - дальнюю зону, т.е. более 100.

Чувствительная зона СО - это участок или объект, появление в котором объекта обнаружения вызывает возникновение полезного сигнала с уровнем, превышающим уровень шума или помехи.

Внутри зоны чувствительности располагается зона отчуждения

Это зона, появление в которой людей, техники или других объектов обнаружения может привести к превышению полезным сигналом порогового значения и выдаче СО сигнала "Тревога".

Внутри зоны отчуждения располагается зона обнаружения СО

Зона, где СО обеспечивает заданную вероятность обнаружения.

Вероятность обнаружения - это вероятность того, что СО выдаст обязательно сигнал "Тревога" при пересечении или вторжении в зону обнаружения нарушителя, в условиях и способами, оговоренными в нормативной документации. Как правило, зарубежные фирмы указывают в качестве вероятности обнаружения СО несмещенную оценку вероятности обнаружения:

где N,«; n - число испытаний по преодолению зоны обнаружения СО; М - число пропусков нарушителя.

Например, если при пересечении ЗО в количестве 100 раз не было пропусков нарушителя, т.е. СО выдало 100 раз сигнал "Тревога", то про это СО можно сказать, что его вероятность обнаружения составляет 0,99.

В отечественной практике под вероятностью обнаружения, как правило, понимается нижняя граница доверительного интервала, в котором с доверительной вероятностью лежит истинное значение вероятности обнаружения.

То есть под вероятностью обнаружения понимается величина

где Р* - среднее частотное значение вероятности обнаружения, определяемое выражением

Коэффициент Стьюдента для данного числа испытаний

и выбранной доверительной вероятности.

"Полезным" называют сигнал, возникающий на выходе чувствительного элемента при преодолении или вторжении в зону обнаружения нарушителя.

Другим важным параметром СО является частота ложных срабатываний Nne . определяемая выражением:

где Т лс - время наработки на ложное срабатывание.

Доверительный интервал для оценки средней наработки на ложное срабатывание задается граничными значениями и Т 2 , определяемыми из соотношений:

где Т исп - продолжительность испытаний; N - число испытываемых образцов;- нижняя оценка параметра распределения Пуассона;- верхняя оценка параметра распределения Пуассона.

Помеховым сигналом называется зависимость электрической величины от времени на выходе ЧЭ СО при воздействии на него возмущающих факторов любой природы, не связанных с вторжением или преодолением объектами обнаружения зоны обнаружения.

Возмущающим воздействием называется воздействие на ЧЭ СО, являющееся причиной возникновения помехи или искажающее форму полезного сигнала.

Примером возмущающего воздействия могут служить: порыв ветра, снег, дождь; кошки, собаки, перемещающиеся в чувствительной зоне; транспорт, перемещающийся вблизи 43, и др.

Флюктуационной помехой называют помеху, являющуюся непрерывным случайным процессом, описываемым своими многомерными функциями распределения.

Импульсной помехой называют помеху, представляющую собой случайную последовательность импульсов, описываемую моментами появления импульсов и их видом.

Причиной пропуска полезного сигнала является маскирующее действие помехи, полностью или частично компенсирующей полезный сигнал, либо отсутствие в полезном сигнале характерных признаков, позволяющих отличить его от помехового сигнала, что приводит к несрабатыванию СО.

При определении вероятности обнаружения СО, выпускаемых в больших объемах, могут применяться методики, использующие кроме доверительного интервала и доверительной вероятности риск заказчика и риск изготовителя. Например, по отечественной методике аналогичное СО будет иметь вероятность обнаружения не более 0,9.

В зависимости от принципа действия различают активные или пассивные РВСО и РЛСО.

Пассивные РВСО и РЛСО используют собственное излучение объекта обнаружения или вызываемое им изменение электромагнитных полей внешних источников.

Активные РВСО и РЛСО используют собственный источник ЭМП для формирования чувствительной зоны.

Различают одно- и двухпозиционные РВСО и РЛСО:

Однопозиционные имеют общий блок приемопередатчика;

Двухпозиционные имеют разнесенные блоки передатчика и приемника.

Пассивные РЛСО применяются для обнаружения нарушителей, имеющих собственное электромагнитное излучение.

Форма чувствительной зоны для пассивных РВСО определяется формой диаграммы направленности антенны. В первом случае она, как правило, круговая, а используемый диапазон лежит в пределах 10 Гц...10 ГГц. Во втором случае, как правило, чувствительная зона имеет лучевую форму и используются метровый и дециметровый диапазоны.

Активные однопозиционные РЛСО включают в себя:

Однопозиционную РЛС;

Нелинейный радиолокатор;

Однопозиционное микроволновое СО.

Однопозиционные РЛС метрового, дециметрового, сантиметрового и миллиметрового диапазонов применяются для контроля территории, прилегающей к особо важным объектам, охраны береговой полосы, прибрежной зоны и ближней разведки в условиях боевых действий. Различают стационарные, мобильные и носимые РЛСО.

Нелинейный радиолокатор использует широкополосный сигнал специальной формы и предназначен для обнаружения человека за неподвижными физическими преградами и укрытиями.

Однопозиционные микроволновые СО используют для временного блокирования разрывов в заграждении, охраны объемов неотапливаемых помещений, входов в охраняемые здания, для перекрытия "мертвых зон" радиолучевых рубежей охраны периметров, организации скрытых рубежей блокирования в охраняемых помещениях.

Примечание: "Мертвой зоной" называется пространство между СО и 30 или разрывы в 30, где вероятность обнаружения меньше заданной.

Данные СО работают в дециметровом, сантиметровом и миллиметровом диапазонах. Для обнаружения используется изменение расположения стоячих волн в охраняемом объеме при появлении объекта обнаружения, либо проявление эффекта Доплера при движении объекта обнаружения.

Двухпозиционные РЛСО работают в дециметровом, сантиметровом и миллиметровом диапазонах и используются для блокирования периметров объектов, мест временного расположения войсковых подразделений, грузов и т.п. Полезный сигнал формируется за счет изменения объектом обнаружения сигнала связи на входе приемника.

Двухпозиционные РВСО работают в декаметровом, метровом и дециметровом диапазонах длин волн и используются для блокирования периметров объектов и организации скрытых рубежей охраны. В качестве антенных систем здесь применяются радиоизлу-чающие кабели, другое название - линия вытекающей волны, а также кусочно-ломаные двух- и однопроводные линии.

В данную классификацию не вошли некоторые СО, являющиеся комбинацией нескольких СО, и еще только разрабатываемые РЛСО с синтезированной апертурой.

Позволяют оборудовать скрытые или маскируемые рубежи охраны периметра.

Различие между радиоволновыми средствами обнаружения (РВСО) и радиолучевыми (РЛСО) состоит в способе формирования чувствительной зоны: РВСО использует ближнюю зону распространения радиоволн (менее 10 длин волн), а РЛСО – дальнюю зону (более 100 длин волн) (рис. 6.7).

а) б)
Рис. 6.7. Внешний вид РВСО (а) и РЛСО (б)

В зависимости от принципа действия различают:

пассивные РВСО и РЛСО используют собственное излучение объекта обнаружения или вызываемое им изменение электромагнитных полей (ЭМП) внешних источников (как правило, вещательных теле- и радиостанций).

активные РВСО и РЛСО используют собственный источник ЭМП для формирования чувствительной зоны.

По конструкционному исполнению:

однопозиционные имеют общий блок приемопередатчика (пассивные РВСО и РЛСО всегда являются однопозиционными);

двухпозиционные имеют разнесенные блоки передатчика и приемника.

Форма чувствительной зоны для пассивных РВСО определяется формой диаграммы направленности антенны (рис. 6.8).

В первом случае она, как правило, круговая, а используемый диапазон 10 Гц…10 ГГц.

Во втором случае, как правило, чувствительная зона имеет лучевую форму и используются метровый и дециметровый диапазоны.

В РВСО в качестве чувствительных элементов используются кабели. На некотором расстоянии параллельно друг другу прокладываются два кабеля (две антенны) специальной конструкции (рис. 6.9). Зазоры между разреженными проводами «экрана» своеобразного коаксиального кабеля образуют щелевую антенну.

Один из кабелей служит передающей антенной, другой – приемной антенной. При возбуждении первой антенны высокочастотными колебаниями она начинает излучать электромагнитное поле, воспринимаемое второй антенной. При этом приемник, подключенный к приемной антенне, принимает сигнал. Если в окрестности двух антенн появляется тело определенного объема с диэлектрической и/или магнитной проницаемостью, отличной от проницаемости свободного пространства, электромагнитное поле, воспринимаемое приемной антенной, искажается (изменяются его амплитуда и фаза). Это изменение детектируется и анализируется приемником-анализатором. Если анализируемый сигнал превышает пороговое значение, формируется сигнал тревоги.

Во избежание образования мертвых зон кабели смежных зон охраны размещают с некоторым перекрытием (2…5 м) в продольном направлении.

РЛСО содержат передатчики и приемники с узконаправленными антеннами. Используемый диапазон частот обычно лежит в пределах 10…40 ГГц. Сечение радиолуча в горизонтальной (а) и вертикальной (б) плоскостях показано на рис. 6.10. Рабочей зоной радиолучевых систем считают зону на участке ВС. На участке АВ луч слишком узкий, и его можно обойти. На участке СD площадь поперечного сечения луча слишком велика по сравнению с площадью потенциального нарушителя, и обнаруживающая способность системы оказывается пониженной. В то же время наличие луча на достаточно протяженном участке CD за пределами рабочей зоны накладывает серьезные ограничения на минимальные размеры зоны отчуждения. При использовании одиночных совмещенных приемопередатчиков типа радиолокаторов зона отчуждения должна превышать размеры участка CD.