Прямая линия. Параллельные прямые. Основные понятия. Параллельные прямые, признаки и условия параллельности прямых

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и ∠1 = ∠2. Возьмём точку О - середину отрезка КL секущей ЕF (рис.).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ ⊥ МN. Докажем, что и СD ⊥ МN.

Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: ∠1 = ∠2 по условию теоремы; ОK = ОL - по построению;

∠МОL = ∠NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, ΔМОL = ΔNОК, а отсюда и ∠LМО = ∠КNО,
но ∠LМО прямой, значит, и ∠КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны, что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например ∠ 3 = ∠2 (рис.);

∠3 = ∠1, как углы вертикальные; значит, ∠2 будет равен ∠1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на рис. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (рис.).

Пусть ∠1 и ∠2-внутренние односторонние углы и в сумме составляют 2d .

Но ∠3 + ∠2 = 2d , как углы смежные. Следовательно, ∠1 + ∠2 = ∠3+ ∠2.

Отсюда ∠1 = ∠3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d (или 180°), то эти две прямые параллельны.


Признаки параллельных прямых:

1. Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

2.Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

3. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то эти две прямые параллельны.

4. Если две прямые параллельны третьей прямой, то они параллельны между собой.

5. Если две прямые перпендикулярны третьей прямой, то они параллельны между собой.

Аксиома параллельности Евклида

Задача. Через точку М, взятую вне прямой АВ, провести прямую, параллельную прямой АВ.

Пользуясь доказанными теоремами о признаках параллельности прямых, можно эту задачу решить различными способами,

Решение. 1-й с п о с о б (черт. 199).

Проводим МN⊥АВ и через точку М проводим СD⊥МN;

получаем СD⊥МN и АВ⊥МN.

На основании теоремы ("Если две прямые перпендикулярны к одной и той же прямой, то они параллельны.") заключаем, что СD || АВ.

2-й с п о с о б (черт. 200).

Проводим МК, пересекающую АВ под любым углом α, и через точку М проводим прямую ЕF, образующую с прямой МК угол ЕМК, равный углу α. На основании теоремы () заключаем, что ЕF || АВ.

Решив данную задачу, можем считать доказанным, что через любую точку М, взятую вне прямой АВ, можно провести прямую, ей параллельную. Возникает вопрос, сколько же прямых, параллельных данной прямой и проходящих через данную точку, может существовать?

Практика построений позволяет предполагать, что существует только одна такая прямая, так как при тщательно выполненном чертеже прямые, проведённые различными способами через одну и ту же точку параллельно одной и той же прямой, сливаются.

В теории ответ на поставленный вопрос даёт так называемая аксиома параллельности Евклида; она формулируется так:

Через точку, взятую вне дaнной прямой, можно провести только одну прямую, параллельную этой прямой.

На чертеже 201 через точку О проведена прямая СК, параллельная прямой АВ.

Всякая другая прямая, проходящая через точку О, уже не будет параллельна прямой АВ, а будет её пересекать.

Принятая Евклидом в его "Началах" аксиома, которая утверждает, что на плоскости через точку, взятую вне данной прямой, можно провести только одну прямую, параллельную этой прямой, называется аксиомой параллельности Евклида .

Более двух тысячелетий после Евклида многие учёные-математики пытались доказать это математическое предложение, но всегда их попытки оказывались безуспешными. Только в 1826 г. великий русский учёный, профессор Казанского университета Николай Иванович Лобачевский доказал, что, используя все другие аксиомы Евклида, это математическое предложение доказать нельзя, что оно действительно должно быть принято за аксиому. Н. И. Лобачевский создал новую геометрию, которая в отличие от геометрии Евклида названа геометрией Лобачевского.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

ГЛАВА III.
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

§ 35. ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ.

Теорема о том, что два перпендикуляра к одной прямой параллельны (§ 33), даёт признак параллельности двух прямых. Можно вывести более общие признаки параллельности двух прямых.

1. Первый признак параллельности.

Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.

Пусть прямые АВ и СD пересечены прямой ЕF и / 1 = / 2. Возьмём точку О - середину отрезка КL секущей ЕF (черт. 189).

Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ_|_МN. Докажем, что и СD_|_МN.
Для этого рассмотрим два треугольника: МОЕ и NОК. Эти треугольники равны между собой. В самом деле: / 1 = / 2 по условию теоремы; ОK = ОL - по построению;
/ МОL = / NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, /\ МОL = /\ NОК, а отсюда и
/ LМО = / КNО, но / LМО прямой, значит, и / КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны (§ 33), что и требовалось доказать.

Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.

2. Второй признак параллельности.

Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.

Пусть какие-нибудь соответственные углы равны, например / 3 = / 2 (черт. 190);
/ 3 = / 1, как углы вертикальные; значит, / 2 будет равен / 1. Но углы 2 и 1 - внутренние накрест лежащие углы, а мы уже знаем, что если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.

На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.

Приложим треугольник к линейке так, как это показано на чертеже 191. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.

3. Третий признак параллельности.

Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).

Пусть / 1 и / 2-внутренние односторонние углы и в сумме составляют 2d .
Но / 3 + / 2 = 2d , как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.

Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.

Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2 d, то эти две прямые параллельны.

Упражнение.

Доказать, что прямые параллельны:
а) если внешние накрест лежащие углы равны (черт. 193);
б) если сумма внешних односторонних углов равняется 2d (черт. 194).

На плоскости прямые называются параллельными, если у них нет общих точек, то есть они не пересекаются. Для обозначения параллельности используют специальный значок || (параллельные прямые a || b).

Для прямых, лежащих в пространстве, требования отсутствия общих точек недостаточно - чтобы они в пространстве были параллельными, они должны принадлежать одной плоскости (иначе они будут скрещивающимися).

За примерами параллельных прямых далеко идти не надо, они сопровождают нас повсюду, в комнате - это линии пересечения стены с потолком и полом, на тетрадном листе - противоположные края и т.д.

Совершенно очевидно, что, имея параллельность двух прямых и третью прямую, параллельную одной из первых двух, она будет параллельна и второй.

Параллельные прямые на плоскости связаны утверждением, которое не доказывается с помощью аксиом планиметрии. Его принимают как факт, в качестве аксиомы: для любой точки на плоскости, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной. Эту аксиому знает каждый шестиклассник.

Ее пространственное обобщение, то есть утверждение, что для любой точки в пространстве, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной, легко доказывается с помощью уже известной нам аксиомы параллельности на плоскости.

Свойства параллельных прямых

  • Если любая из параллельных двух прямых параллельна третьей, то они взаимно параллельны.

Этим свойством обладают параллельные прямые и на плоскости, и в пространстве.
В качестве примера рассмотрим его обоснование в стереометрии.

Допустим параллельность прямых b и с прямой a.

Случай, когда все прямые лежат в одной и той же плоскости оставим планиметрии.

Предположим, a и b принадлежат плоскости бетта, а гамма - плоскость, которой принадлежат a и с (по определению параллельности в пространстве прямые должны принадлежать одной плоскости).

Если допустить, что плоскости бетта и гамма различные и отметить на прямой b из плоскости бетта некую точку B, то плоскость, проведенная через точку B и прямую с должна пересечь плоскость бетта по прямой (обозначим ее b1).

Если бы полученная прямая b1 пересекала плоскость гамма, то, с одной стороны, точка пересечения должна была бы лежать на a, поскольку b1 принадлежит плоскости бетта, а с другой, она должна принадлежать и с, поскольку b1 принадлежит третьей плоскости.
Но ведь параллельные прямые a и с пересекаться не должны.

Таким образом, прямая b1 должна принадлежать плоскости бетта и при этом не иметь общих точек с a, следовательно, согласно аксиоме параллельности, она совпадает с b.
Мы получили совпадающую с прямой b прямую b1, которая принадлежит одной и той же плоскости с прямой с и при этом ее не пересекает, то есть b и с - параллельны

  • Через точку, которая не лежит на заданной прямой, параллельная данной может проходить лишь одна единственная прямая.
  • Лежащие на плоскости перпендикулярно третьей две прямые параллельны.
  • При условии пересечения плоскости одной из параллельных двух прямых, эту же плоскость пересекает и вторая прямая.
  • Соответствующие и накрест лежащие внутренние углы, образованные пересечением параллельных двух прямых третьей, равны, сумма у образовавшихся при этом внутренних односторонних равна 180°.

Верны и обратные утверждения, которые можно принять за признаки параллельности двух прямых.

Условие параллельности прямых

Сформулированные выше свойства и признаки представляют собой условия параллельности прямых, и их вполне можно доказать методами геометрии. Иначе говоря, для доказательства параллельности двух имеющихся прямых достаточно доказать их параллельность третьей прямой либо равенство углов, будь то соответствующих или накрест лежащих, и т.п.

Для доказательства в основном используют метод «от противного», то есть с допущения, что прямые непараллельны. Исходя из этого допущения, легко можно показать, что в этом случае нарушаются заданные условия, например, накрест лежащие внутренние углы оказываются неравными, что и доказывает некорректность сделанного допущения.