Оптические аберрации (искажения) зрительной системы человека. Что такое дисторсия объектива и как она проявляется на фотографиях

Дисторсия (от distorsio лат. - искривление) - это оптическое искажение пространства. Наиболее характерно дисторсия проявляется при использовании широкоугольных объективов. Бывает дисторсия трех видов: бочкообразная (выпуклая), подушкообразная (вогнутая) и перспективная .

Подушкообразная дисторсия характерна для широкого угла. На телеобъективах она отсутствует, но зато может проявляться подушкообразная дисторсия (обычно от фокусного расстояния 200 мм и выше). Портретные и штатные объективы (например, 85 мм и 50 мм) наименее подвержены эффекту дисторсии, там она практически не заметна. Так что корректировать дисторсию чаще всего надо при съемке на широкоугольные объективы.

Когда дисторсия наиболее заметна?

Когда в кадре присутствуют прямые линии по всей его площади. К примеру, при съемке архитектуры широкоугольным или сверх-широкоугольным объективом вам непременно нужно будет заняться коррекцией дисторсии подушкообразной. А если точка съемки была низкой - то привет, дисторсия перспективная!*

Однако, есть в этом и позитивные моменты. Как я уже говорил ранее, кадры, сделанные сверх-широкоугольными объективами (т.н. «рыбий глаз») имеют ярко выраженные оптические дисторсии. Но в данном случае это не минус, а плюс объектива, его сильная сторона и этим он так ценится в фото-сообществе. Уверяю вас, никакой штатник, портретник и тем более телевик не смогут дать такого яркого вау-эффекта, когда охватывается пространство на все 180 градусов! И это, кстати, еще не предел для фишая! Существуют экземпляры, позволяющие за одно срабатывание затвора сделать фото на 270 градусов! Хотя, конечно, у каждого объектива есть свое предназначение и свои сильные стороны, определенный шарм у фишаев все же имеется:)

Коррекция дисторсии

К счастью, в случае необходимости, каждое из перечисленных выше искажений можно исправить. В пейзажной фотографии, кстати, дисторсии менее заметны, чем, например, фото архитектуры, изобилующее вертикальными линиями.

В качестве примера берем фото с бочкообразной дисторсией, на котором есть оба вида линий (горизонтальные и вертикальные), это наилучшим образом продемонстрирует эффективность инструментария Lens Correction. Если вы прочитали профиль на иллюстрации справа, то уже знаете, что фотография снята «сладкой парочкой» - полнокадровым фотоаппаратом и фишай-объективом.

Для начала исправим дисторсию - применим профиль и более точно откорректируем результат слайдером. Как видите, мы помахали ручкой бочкообразной дисторсии. Осталось выровнять горизонтальные и вертикальные линии.

Также здесь можно исправлять перспективные искажения. Для этого воспользуемся слайдерами, отвечающими за соответствующую коррекцию. А выстроить правильную геометрию кадра поможет специальная сетка (появляется по нажатию клавиши V). На иллюстрации вы видите, что вертикальная дисторсия уже исправлена.

Итак, все линии выстроены практически идеально (на иллюстрации используемые слайдеры отмечены). Из-за того, что мы исправляли бочкообразную дисторсию, у нас в нижней части кадра по центру произошла незначительная потеря информации. Поэтому финальный штрих - кадрирование (шестой инструмент в верхнем левом углу иллюстрации). Чтобы автоматически скадрировать, оставив все полезное пространство и исключить «съеденное» - ставим галочку напртив функции Constrain to Image (см. иллюстрацию).

Недостатки коррекции дисторсии

В результате коррекции искажений может потребоваться обрезание (кадрирование) изогнутых краев исправленного кадра, это может повлиять на композицию. Коррекция также перераспределяет разрешение изображения: при подушкообразной дисторсии после коррекции может подняться резкость по краям кадра по отношению к центру. При исправлении бочкообразной дисторсии - наоборот, резкость по краям кадра может упасть.

*Перспективная дисторсия технически не является искажением, поскольку она - естественное проявление передачи объективом трехмерного пространства. Наш мозг в свою очередь «знает», как правильно выглядят объекты в реальности, и следовательно, воспринимает сходящиеся линии на фото (в тех случаях, когда они должны быть параллельны), как не соответствующие действительности. Для корректного отображения перспективы используются специальные tilt/shift объективы, в которых свойства наклона /сдвига линз позволяют исключить появление перспективной дисторсии.

Вот мы и рассмотрели основные недостатки фотографической оптики и научились, как избежать их появления. А также овладели методами их нейтрализации при появлении на снимках.

Надеюсь, теперь ваши фотографии станут еще лучше. По крайней мере, в техническом плане стать таковыми они просто обязаны!

Юрий Кривенко , специально для funPhoto.ua

Очень многие фотографы и любители в самом начале своего творческого пути сталкиваются с такой неприятной штукой на фотографии, как дисторсия. Данная статья поможет вам разобраться, что такое дисторсия, почему она возникает и как можно предотвратить ее появление. Итак, под понятием «дисторсия » обычно подразумеваются геометрические искривления объектов, искажения линий, появляющиеся в процессе формирования изображений.

Виды дисторсии

Наиболее распространенными видами данного дефекта считаются «подушкообразная », а также «бочкообразная » дисторсии. Для бочкообразной дисторсии характерно выгибание линий наружу, при этом изображение становится выпуклым, главным образом это касается, линий по краям кадра. А для подушкообразной - изгиб линий, который направляется ближе к центру кадра, линии при этом как бы вогнуты. Кроме того, подушкообразную дисторсию иногда ещё называют отрицательной, и она является характерной для широкого угла. А бочкообразная, или положительная дисторсия, чаще всего может проявляться на длинных фокусах.

Почему возникает дисторсия

Дисторсия может возникать по нескольким причинам. Одной из них является схождение параллельных линий, когда фотоаппарат находится в наклонном положении или его наклоняет фотограф — чаще всего это искажение возникает во время съемки высоких зданий с нижнего ракурса. Кроме того, дисторсия может возникнуть и в случае использования дешевых объективов сомнительного качества. Вообще, данная особенность свойственна зум-объективам, то есть, объективам с переменным фокусным расстоянием. А объективы, у которых фокусное расстояние является постоянным, обеспечивает безупречно четкую композицию безо всяких геометрических искажений.

Как избежать появления дисторсии

Для того, чтобы избежать появления дисторсии на фотографиях, лучше всего приобрести дорогой и качественный объектив . В некоторых случаях данную проблему сможет решить использование более широкоугольного объектива . А еще можно попробовать давно известный и проверенный прием — отойти от объекта съемки на более отдаленное расстояние и воспользоваться функцией приближения. Устранить дисторсию уже с готового фотоснимка и сделать его более пропорциональным и гармоничным можно при помощи специальной простой опции в Adobe Photoshop или любом другом графическом редакторе.


Дисторсия как художественный инструмент

Не во всех случаях дисторсию можно считать недостатком и искажением. Иногда она представляет собой своеобразный художественный метод. Существуют даже определенные типы объективов, которые призваны не только не устранять дисторсию, но и намеренно подчеркивать ее. Одним из таких типов объективов является Fish-Eye , что в переводе означает «рыбий глаз». Это одна из наиболее необычных оптических систем для зеркальных фотокамер. Угол изображения этого сверхширокоугольного объектива с выпуклой передней линзой составляет 180 градусов, а иногда и более. В результате получается круговая картинка, а сам кадр при этом остается прямоугольным. Объективы данного типа присутствуют в арсенале практически всех ведущих производителей фототехники — Nikon , Canon и других.

Другим видом объективов с намеренной (положительной) дисторсией являются Tilt /Shift объективы . Чаще всего их применяют во время архитектурной либо технической фотосъемки. Основной особенностью Tilt /Shift объектива является контроль перспективы, а также возможность ее коррекции. Это оптическая конструкция со сдвигом и возможностью наклона. Самым первым в мире объективом такого типа является f/3.5 PC-Nikkor , который был сконструирован и собран знаменитой компанией Nikon в 1961 году. Чаще всего эти объективы используют на 35-миллиметровых и среднеформатных однообъективных зеркальных фотоаппаратах. В настоящее время всё более востребованными становятся Tilt /Shift объективы с фокусным расстоянием 24, 28, 35, 45, 85, а также 90 миллиметров.

Дисторсия и перспектива

Никогда не следует путать между собой такие понятия, как перспектива и геометрические искажения. Их объединяет один важный фактор — угол зрения объектива. Однако, если дисторсия, то есть, геометрическое искажение, является существенным дефектом композиции, то перспектива представляет собой особое свойство мира и нашего собственного восприятия. Человеческие глаза способны видеть все практически на 180 градусов. С этой точки зрения нам всегда необходим широкий угол, дающий перспективу. О сайте fotomtv .

Показать html-код для вставки в блог

Что такое дисторсия в фотографии

Очень многие фотографы и любители в самом начале своего творческого пути сталкиваются с такой неприятной штукой на фотографии, как дисторсия. Данная статья поможет вам разобраться, что такое дисторсия, почему она возникает и как можно предотвратить ее появление

Читать подробнее

Пусть - информация в форме, допускающей дискретизацию, имеющаяся в так называемой плоскости изображения. Произвольная точка на этой плоскости задается радиус-вектором х. Функциональная

зависимость от х записывается как

Функциональные зависимости всех других величин, заданных в плоскости изображения, представляются аналогичным образом.

Предположим теперь, что информация подвергается инвариантному во времени искажению, определяемому функцией значение функции в точке «размывается» на плоскости изображения в соответствии с видом функции Это означает, что рассматриваются только линейные искажения, так что искаженный сигнал может быть в достаточно общем виде записан следующим образом:

где через обозначен элемент площади с центром в точке (плоскости изображения), определяемой радиус-вектором В выражении (3.2) указан двойной интеграл ввиду двумерности плоскости изображения. Бесконечные пределы просто говорят о том, что интегрированием охватывается все изображение.

Если искажение имеет столь общий характер, что выражение (3.2) невозможно конкретизировать и упростить, то редко удается успешно восстановить функцию но функции Широко применимые методы восстановления и реконструкции были разработаны для пространственно-инвариантных искажений (характеризующихся тем, что размытие получается одним и тем же для всех точек х), либо для искажений. которые можно представить как пространственно-инвариантные одним из двух методов. Первый метол основан на геометрическом преобразовании изображения для перевода иространственно-зависимого искажения в пространственно-инвариантное. Во втором методе изображение с пространственно-зависимым искажением разбивается на ряд фрагментов, в каждом из которых его можно рассматривать как пространственно-инвариантное. Оба эти метода подробно рассматриваются в § 15.

Пространственная инвариантность означает, что функция, задающая искажение, имеет вид

Если функцию (3.3) подставить в выражение (3.2), то мы получим так называемый интеграл свертки. Операцию свертки будем обозначать звездочкой, поставленной в качестве знака умножения. Тогда выражение (3.2) с учетом равенства (3.3) можно записать в компактной форме

Даже если искажение является пространственно-инвариантным, не существует каких-либо априорных ограничений, налагаемых на вид ялра свертки Олнако на практике часто встречаются вполне определенные вилы этой функции, четыре из которых приведены в табл. 1.1 (см. пример 1 в конце данной главы). Линейный смаз возникает, если фотографируемый объект перемещается в процессе экспозиции по прямой линии (или же, что эквивалентно, если камера случайно качнется, а объект неподвижен). Промежуточный профиль, изображенный в табл. 1.1 в случае смаза, показывает, как движется фотографируемый объект в ходе экспозиции (резкий срез профиля на краях отвечает очень быстрому срабатыванию затвора камеры). Если высота сечения постоянна в процессе экспозиции, то такой линейный смаз называется однородным.

Другая обычная причина фотографического искажения - эффект расфокусировки. В этом случае функция имеет вид, очень близкий к кругу. (Это можно сказать из простых соображений геометрической оптики: данный круг есть пересечение плоскости изображения с конусом лучей, исходящим из дальней точки поля фотокамеры, который сходился бы в точку в плоскости изображения, если бы камера находилась в фокусе; тогда плоскость изображения была бы фокальной плоскостью.) Когда объект рассматривается через турбулентную среду при помощи оптической системы с высоким разрешением, искажение в случае короткой экспозиции (на протяжении которой состояние среды не успевает измениться) часто хорошо описывается функцией имеющей форму набора случайных импульсов. В случае же длительных экспозиций форма функции приближается к гауссовской. Хотя причины этих четырех видоп искажения могут быть самыми разными, указанные выше, пожалуй, наиболее типичны.

Обратимся теперь к процессу формирования изображений в оптической системе, отделенной от объекта искажающей средой. Мы будем предельно кратки. Подробный анализ можно найти в литературе. Указанная в § 1 произвольная точка в плоскости, на которую падает излучение, характеризуется радиус-вектором Если поле излучения в каждой точке представляет собой просто модулированное по амплитуде и фазе поле, которое существовало бы в этой точке в отсутствие искажения, то искажение называется изопланатическим. Изопланатизм - очень простое понятие, но оно имеет весьма важное практическое значение, а поэтому целесообразно дать и другое его определение. Рассмотрим луч, исходящий из произвольной точки источника излучения и приходящий в точку Будем характеризовать ослабление и задержку этого луча, отвечающие искажению, модулем и фазой комплексного числа Условием

изоиланатичности является независимость комплексного числа от т. е. равенство

Подчеркнем, что на практике при изопланатическом искажении комплексное число может сильно меняться в зависимости от точки Чем больше линейные размеры источника излучения, тем менее вероятно выполнение условия (3.5) для произвольной конкретной искажающей среды. К тому же, тобы условие (3.5) оставалось справедливым, размеры «ячеек» среды, которая вводит искажение, должны превышать некоторое минимальное значение, определяемое геометрией источника и среды. Таким образом, мы приходим к понятию участка изопланатизма. размер которого есть наибольший «эффективный размер» источника излучения. Удобно выражать размеры участка изопланатизма в угловой мере. Если во всех точках видимые угловые размеры источника излучения меньше размеров участка изопланатизма, то искажение является изопланатическим.

Обозначим поле излучения в произвольный момент времени в точке через а его фурье-образ через (§ 6). Предположим, что точка лежит в плоскости зрачка (т. е. в плоскости апертурной диафрагмы) устройства, формирующего изображение (например, телескопа, ультразвукового преобразователя, радиоантенны). Если фокальную поверхность такого устройства отождествить с плоскостью изображения, введенной в § 1, то сигнал будет «мгновенным изображением», формируемым этим устройством.

Введем теперь понятие аналитического сигнала. Эго сигнал, который не имеет отрицательных временных частот. Аналитический сигнал обязательно является комплексным, причем его мнимая часть связана преобразованием Гилъберта с его вещественной частью. За вещественную часть аналитического сигнала обычно принимают фактически измеряемый сигнал. Самый простой аналитический сигнал - экспоненциальная функция , где постоянная угловая частота, постоянная фаза. Вещественный сигнал, соответствующий этой функции, равен . В данной книге аналитические сигналы будут встречаться мало, и поэтому здесь мы не будем подробно останавливаться на них (исчерпывающее изложение теории аналитических сигналов лано в литературе, указанной в § I). Однако подчеркнем, что всюду, где будет вводиться сигнал, явным образом зависящий от времени он будет считаться комплексным и не имеющим отрицательных временных частот.

Свойства «изображения», формируемого соответствующим устройством, зависят от степени пространственной когерентности источника излучения. В формируемом изображении степень

пространстве иной когерентности находит выражение в том, как зависит от величина

где интервал времени, достаточно большой для рассматриваемого приложения. Полная когерентность имеет место, когда величина для любых двух точек х их, в которых величины конечны, тоже отлична от нуля. В случае полной пространственной некогерентности величина (3.6) равна нулю при значениях превышающих наименьший линейный размер самой малой детали, которая может быть разрешена устройством, формирующим изображение.

Отметим, что чертой над любой функцией времени в данной книге всегда обозначается усреднение по времени.

Излучение с пространственной когерентностью, промежуточной между полной и нулевой, почти не применяется, а потому далее будут рассматриваться только крайние случаи полной пространственной когерентности и полной пространственной некогерентности. Конечно, эти крайние случаи - идеализация, но на практике возможно то или иное приближение к ним. Например, это имеет место при отражении и преломлении излучений, испускаемых радио- и СВЧ-передатчиками, ультразвуковыми преобразователями и лазерами, с одной стороны, и различными естественными источниками излучения в природе - с другой. Поэтому и имеет смысл рассматривать только эти два предельных случая когерентности.

При оценке степени пространственной когерентности для удобства обычно рассматривают отдельные спектральные составляющие (изображений и излучений), считая их монохроматическими. Например, мгновенное изображение рассматривается в виде Идеальное записываемое изображение, которое мы будем обозначать символом выражается через следующим образом:

Отметим, что усреднение по времени в определении (3.7) должно проводиться по большому числу периодов центральной частоты поля, падающего на фокальную поверхность устройства, формирующего изображение. Временной интервал такого усреднения обычно составляет малую долю длительности реального процесса записи (например, экспонирования пленки, сканирования одного элемента

многоэлементного фотоприемника, получения достаточно большого сигнала СВЧ-приемника). Заметим, что миллион периодов видимого спета составляют только несколько наносекунд, а для большей части СВЧ-диапазона временной интервал в охватывает более тысячи периодов. С точки зрения обработки изображений различие между случаями пространственной когерентности и пространственеюй некогерентноети сводится к следующему:

В данной книге обработка изображений пространственно-когерентных полей не рассматривается главным образом из-за практических трудностей, связанных с реализацией «оптических» вычислений (§ 2). Далее там, где специально не оговаривается противное, предполагается, что

Если пренебречь шумом, который неизбежно вносится при записи изображений, а также считать искажение идеально изопланатичсским, функция совпадает с функцией в формуле (3.4). Это - следствие теоремы о свертке для фурье-образов (см. § 7, а также § 8, в котором далее рассматривается вопрос об изображениях пространственно-некогерентных источников). В соответствии с условием (3.9) в данной книге всюду, где специально не оговаривается противное, предполагается, что

Подчеркнем, что дифракционно-ограниченное изображение, поскольку диаметр апертуры (или зрачка) любого устройства, формирующего изображение, обязательно конечен. Если X - центральная длина волны излучения, то устройство, формирующее изображение, не может разрешить детали реальной картины источников, которые соответствуют углам, меньшим . В принципе сверхразрешение возможно, но лишь при условии, что размеры разрешаемых деталей в исходном изображении значительно превышают размер одного элемента изображения.

Искажения, обсуждавшиеся до сих пор в данном параграфе, могут компенсироваться методами, излагаемыми в гл. 3 и 6. Методы, вводимые

в гл. 7-9, пригодны как для компенсации указанных искажений, гак и для коррекции геометрических искажений и улучшения визуального качества изображений (см. соответствующие определения в § 2).

Искажения изображений возникают не только вследствие влияния среды распространения и несовершенства или неверной настройки устройства, формирующего изображение. Иногда они связаны с тем, что не допускают измерения или отсутствуют некоторые очень важные данные, как в задачах, рассматриваемых в гл. 4. В других случаях они могут быть связаны с процедурой измерений, которая, хотя в конечном счете и идеальна, вносит искажения, так что без дополнительной обработки изображения практически непригодны для использования, как в приложениях, обсуждаемых в гл. 5.

© 2013 сайт

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

Меридиональный фокус.
Сагиттальный фокус.
При попытке достичь компромисса мы получаем универсально нерезкое изображение.
Исходное изображение без астигматизма.

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом »). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.


Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше , редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы »). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому , досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Аберрациями в фотографии называют искажения снимков, сформированные системой оптики. В зависимости от природы происхождения аберрации бывают хроматическими и геометрическими. Причиной возникновения хроматических (то есть цветовых) аберраций является неидеальность оптики фотоаппаратов. Фактически этот вид искажения можно назвать свойством объектива, потому что в той или иной мере оно присуще любому из них. Чем ниже качество используемой оптики, тем больше цветовых искажений наблюдается на снимках. Часто на фотографиях, сделанных дешевыми «мыльницами», наблюдается яркая разноцветная кайма, обрамляющая контрастные объекты. Это и есть хроматическая аберрация.


Для минимизации этого вида искажений были созданы специальные ахроматические линзы , состоящие из двух различных сортов стекла. Один из них – крон , обладает низким коэффициентом преломления, второй – флинт , наоборот, высоким. Правильное сочетание этих двух материалов позволяет свести видимую хроматическую аберрацию практически к нулю. Само же оптическое явление, при котором лучи света с разными длинами волн преломляются под разными углами, называется дисперсией стекла .

Не меньшей головной болью начинающих фотографов, чем цветовые, являются аберрации геометрические.

Искажение, при котором точки объекта, расположенные за пределами оптической оси, на снимке отображаются в виде затемнений или линий, называется астигматизмом. Объекты на фотографии при астигматизме выглядят искривленными, изогнутыми и немного размытыми. Таким образом, астигматизм наряду с хроматическими аберрациями оказывает влияние на резкость изображения (пусть и в меньшей степени).


Если контуры объектов на фотографии имеют неестественно вогнутую или выпуклую форму, и это не является художественным замыслом, такой вид геометрической аберрации называется дисторсией . В первом случае (когда линии вогнуты внутрь) речь идет о бочкообразном искажении, во втором – о подушкообразном.


Дисторсии возникают в результате изменения линейного увеличения, обеспеченного оптикой, по полю изображения. Иными словами, световые лучи, проходя через центр линзы, сливаются в точке, расположенной дальше от линзы, чем лучи, которые проходят через ее края. Появлению бочкообразной дисторсии, как правило, способствует применение минимального значения зума, подушкообразной – соответственно, максимального. Наиболее явно искажение проявляется при использовании широкоугольных объективов.

Для снижения дисторсий применяется асферическая оптика. Благодаря включению в конструкцию объектива линзы с эллиптической или параболической поверхностью геометрическое подобие между объектом фотографии и его изображением восстанавливается. Разумеется, стоимость производства таких линз значительно превосходит цену изготовления сферической оптики.

Незначительные проявления дисторсии легко корректируются средствами графического редактора.

Вид геометрической аберрации, препятствующий формированию объективом плоского изображения, называется кривизной поля изображения . При таком искажении в фокусе может находиться или центр изображения, или его края.

Корректировка кривизны поля изображения осуществляется внесением изменений в сборку объектива. При этом обязательным условием является соблюдение правила Пецвала, определяющего качество элементов объектива. Если обратная величина произведения фокусного расстояния и показателя преломления одного элемента в сумме с общим числом элементов дает ноль, значит, этот элемент хорош. Результат этих расчетов именуется суммой Пецвала.

Интересно, что техникой исправления кривизны поля фотографы не владели вплоть до середины XIX века. Но это ничуть не мешало им заниматься художественным фото. Размытые углы и нечеткие края прикрывались замысловатыми виньетками, а портреты (с целью минимизации искажений) обрамлялись в овальные рамы.

Сложная аберрация, влияющая исключительно на световые лучи, проходящие через объектив под углом, называется коматической (или просто комой). На снимках кома проявляется в размытости отдельных точек изображения в форме кометы. «Хвост» кометы при этом может быть направлен к краю снимка (позитивная кома) или к его центру (негативная кома). Это искажение тем заметнее, чем ближе точка к краю снимка. Те же лучи света, которые проходят четко через центр объектива, коматической аберрации не подвержены.

Большинство геометрических аберраций можно снизить при помощи регулировки диафрагмы. Уменьшая ее диаметр, фотограф уменьшает одновременно и количество лучей, попадающих на края объектива. Но пользоваться этой возможностью нужно аккуратно. Потому что чрезмерное дифрагмирование приводит к росту величины дифракции.

– это оптический эффект, ограничивающий детальность снимка вне зависимости от установленного разрешения изображения. Причиной его возникновения является рассеивание светового потока при прохождении через диафрагму. Многие новички, стремясь увеличить глубину резкости, прикрывают диафрагменное отверстие до такой степени, что достигнутая резкость перекрывается сглаживающим действием дифракции. Этот эффект принято называть дифракционным пределом. Знание его величины позволяет избежать проблем с детализацией изображения. Для расчета дифракционного предела используется специальный калькулятор, доступный для бесплатного скачивания на большинстве специализированных сайтов.


При выборе фотоаппарата следует помнить, что объективов без аберраций не существует. Во всяком случае, пока. Даже самая дорогая оптика демонстрирует некоторые искажения изображений. Корректировка одного вида нарушений ведет к усилению другого – и этот процесс не имеет конца. Но для того, чтобы стать хорошим фотографом, совершенно необязательно дожидаться изобретение идеальной линзы. Достаточно изучить особенности конкретного объектива – и нивелировать его недостатки собственным мастерством.