Черная дыра: что внутри? Интересные факты и исследования. Черная дыра - что это и что будет, если в нее попасть

Как для ученых минувших столетий, так и для исследователей нашего времени наибольшей загадкой космоса является черная дыра. Что внутри этой совсем незнакомой для физики системы? Какие законы там действуют? Как идет время в черной дыре, и почему оттуда не могут вырваться даже кванты света? Сейчас мы попробуем, конечно же, с точки зрения теории, а не практики, разобраться в том, что внутри черной дыры, почему она, в принципе, образовалась и существует, как она притягивает объекты, которые ее окружают.

Для начала опишем этот объект

Итак, черной дырой именуется определенная область пространства во Вселенной. Выделить ее как отдельную звезду или планету невозможно, так как это не твердое и не газовое тело. Не имея базовых пониманий того, что такое пространство-время и как эти измерения могут видоизменяться, невозможно постичь того, что находится внутри черной дыры. Дело в том, что эта область не является лишь пространственной единицей. который искажает как три известных нам измерения (длину, ширину и высоту), так и временную шкалу. Ученые уверены в том, что в районе горизонта (так называется область, окружающая дыру) время принимает пространственное значение и может двигаться как вперед, так и назад.

Познаем тайны гравитации

Если мы желаем разобраться в том, что внутри черной дыры, рассмотрим детально, что такое гравитация. Именно это явление ключевое в понимании природы так называемых «кротовых нор», из которых не выбирается даже свет. Гравитацией называется взаимодействие между всеми телами, которые имеют материальную основу. Сила такого тяготения зависит от молекулярного состава тел, от концентрации атомов, а также от их состава. Чем больше частиц сколлапсировано в определенном участке пространства, тем больше гравитационная сила. Это неразрывно связано с Теорией Большого взрыва, когда наша Вселенная была размером с горошину. Это было состояние максимальной сингулярности, и в результате вспышки квантов света пространство стало расширяться за счет того, что частицы отталкивались друг от друга. С точностью до наоборот описывается учеными черная дыра. Что внутри такой штуковины в соответствии с ТБЗ? Сингулярность, которая равна показателям, присущим нашей Вселенной в момент зарождения.

Как попадает материя в «кротовую нору»?

Бытует мнение, что человек никогда не сможет понять, что происходит внутри черной дыры. Так как, попав туда, он будет буквально раздавлен гравитацией и силой тяжести. На самом деле это не совсем так. Да, действительно, черная дыра представляет собой область сингулярности, где все сжато до максимума. Но это вовсе не «космический пылесос», который способен затянуть в себя все планеты и звезды. Любой материальный объект, оказавшийся на горизонте событий, будет наблюдать сильное искажение пространства и времени (пока что эти единицы стоят отдельно). Эвклидова система геометрии начнет давать сбои, иными словами, пересекутся, очертания стереометрических фигур перестанут быть привычными. Что касается времени, то оно будет постепенно замедляться. Чем ближе вы будете приближаться к дыре, тем медленнее будут идти часы относительно Земного времени, но вы этого не заметите. При попадании в «кротовую нору» тело будет падать с нулевой скоростью, но при этом данная единица будет равняться бесконечности. кривизны, который приравнивает бесконечное к нулю, что окончательно останавливает время в области сингулярности.

Реакция на излучаемый свет

Единственным объектом в космосе, который притягивает свет, является черная дыра. Что внутри нее находится и в каком оно там виде - неизвестно, но полагают, что это кромешная тьма, которую представить себе невозможно. Световые кванты, попадая туда, не просто исчезают. Их масса умножается на массу сингулярности, что делает ее еще больше и увеличивает ее Таким образом, если внутри «кротовой норы» вы включите фонарик, чтобы осмотреться, он не будет светиться. Излучаемые кванты будут постоянно множиться на массу дыры, и вы, грубо говоря, лишь усугубите свое положение.

Черные дыры на каждом шагу

Как мы уже разобрались, основой образования является гравитация, величина которой там в миллионы раз превосходит земную. Точное представление о том, что такое черная дыра, подарил миру Карл Шварцшильд, который, собственно, и открыл тот самый горизонт событий и точку невозврата, а также установил, что ноль в состоянии сингулярности равен бесконечности. По его мнению, черная дыра может образоваться в любой точке пространства. При этом определенный материальный объект, имеющий сферическую форму, должен достичь гравитационного радиуса. Например, масса нашей планеты должна уместиться в объеме одного горошка, чтобы стать черной дырой. А Солнце должно иметь диаметр в 5 километров при своей массе - тогда его состояние станет сингулярным.

Горизонт образования нового мира

Законы физики и геометрии отлично действуют на земле и в открытом космосе, где пространство близится к вакууму. Но они полностью теряют свою значимость на горизонте событий. Именно поэтому с математической точки зрения невозможно рассчитать, что внутри черной дыры. Картинки, которые можно придумать, если искривлять пространство в соответствии с нашими представлениями о мире, наверняка далеки от истины. Установлено лишь, что время тут превращается в пространственную единицу и, скорее всего, к существующим измерениям прибавляются еще какие-то. Это дает возможность полагать, что внутри черной дыры (фото, как известно, этого не покажет, так как свет там съедает сам себя) образуются совсем иные миры. Эти Вселенные могут состоять из антивещества, которое ныне незнакомо ученым. Также существуют версии, что сфера невозврата - это лишь портал, который ведет либо в другой мир, либо в другие точки нашей Вселенной.

Рождение и смерть

Куда более чем существование черной дыры, является ее зарождение или исчезновение. Сфера, искажающая пространство-время, как мы уже выяснили, образуется в результате коллапса. Это может быть взрыв большой звезды, столкновение двух и более тел в космосе и так далее. Но каким образом материя, которую теоретически можно было бы ощупать, превратилась в область искажения времени? Загадка находится в процессе работы. Но за ней следует второй вопрос - почему такие сферы невозврата исчезают? И если черные дыры испаряются, то почему из них не выходит тот свет и вся космическая материя, которую они втянули? Когда вещество в зоне сингулярности начинает расширяться, гравитация постепенно снижается. В результате черная дыра просто растворяется, и на ее месте остается обычное вакуумное космическое пространство. Из этого вытекает еще одна загадка - куда подевалось все то, что в нее попало?

Гравитация - наш ключ к счастливому будущему?

Исследователи уверены в том, что энергетическое будущее человечества может сформировать именно черная дыра. Что внутри этой системы, пока что неизвестно, но удалось установить, что на горизонте событий любая материя трансформируется в энергию, но, конечно же, частично. К примеру, человек, оказываясь около точки невозврата, отдаст 10 процентов своей материи для ее переработки в энергию. Этот показатель просто колоссальный, он стал сенсацией у астрономов. Дело в том, что на Земле при материя перерабатывается в энергию лишь на 0,7 процента.

Черными дырами названы звезды, которые предположительно имеют настолько большие массы и малые размеры, что свет не может преодолеть силу тяжести и покинуть звезду.

По-видимому, черные дыры - это те объекты Вселенной, которые привлекают наибольшее внимание людей. Это звезды большой массы на конечной стадии жизни, которые создают столь сильное гравитационное поле, что абсолютно не могут отражать свет, поэтому для наблюдателя они кажутся черными. Не излучая электромагнитной энергии какого-либо типа, они не могут наблюдаться непосредственно, и поэтому настолько трудно подробно изучить их природу, что можно начать сомневаться в их существовании. Но в последние годы набралось достаточное количество доказательств их наличия, позволивших с достаточной уверенностью определить место этих объектов среди прочих, населяющих Вселенную.

Итак, тело, подвергающееся достаточно значительному сжатию, через какое-то время перестает отпускать от себя световые лучи. Радиус, при котором это начинает происходить, впервые рассчитал Карл Шварцшильд . По всей видимости, его можно считать величайшим астрофизиком первой половины двадцатого столетия. Ему принадлежат основополагающие вклады во многие разделы астрофизики. После того как сформулировал свои уравнения общей теории относительности, Карл Шварцшильд незадолго до своей смерти получил для них первые точные решения, описывающие, в частности, и свойства черных дыр. Шварцшильд был директором обсерваторий в Гёттингене и Потсдаме; в 1916 г. в возрасте 43 лет он умер от болезни, полученной им на фронтах первой мировой войны. Его прах покоится на центральном кладбище в Гёттингене.

Радиус, до которого необходимо сжать тело, чтобы свет от него не мог уходить в пространство, называют радиусом Шварцшильда . Для Солнца он составляет около трех километров. Если сжать Солнце до этого или меньшего радиуса, то его свет не будет выходить наружу. Вообще говоря, радиус Шварцшильда может быть рассчитан для любого тела. Чем меньше масса тела, тем меньше и радиус Шварцшильда. Для того количества вещества, из которого состоит человек, радиус Шварцшильда настолько мал, что если его выразить в сантиметрах, получится ноль целых и еще двадцать один ноль после запятой, и только дальше появятся цифры, отличные от нуля. Если сжать массу, равную массе человека, до столь малого радиуса, то во внешнее пространство от нее не будет уходить свет.

Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, проходящие вблизи нее, и отклоняет лучи, идущие от нее на более значительном расстоянии. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему.

Но пока что это все был наш мысленный эксперимент. Существуют ли черные дыры в действительности? Довольно трудно представить себе, чтобы на нейтронную звезду поступало столь большое количество вещества, что ее масса увеличилась до того предела, за которым наступает гравитационный коллапс. У рентгеновских двойных звезд, например, поток вещества, поступающего к нейтронной звезде, настолько мал, что за все время жизни звезды, отдающей свою массу, масса нейтронной звезды увеличивается совсем ненамного. Но что мы знаем о возникновении нейтронных звезд? Всего лишь то, что пульсар в Крабовидной туманности образовался после взрыва Сверхновой. А что мы знаем о взрывах сверхновых? Не может ли случиться, что иногда после разлета внешней оболочки остается еще масса, достаточная не только для образования нейтронной звезды, но и для дальнейшего коллапса ее в черную дыру? Относительно некоторых рентгеновских двойных имеется сильное подозрение, что компактным объектом, от которого исходит рентгеновское излучение, является не нейтронная звезда, а черная дыра. Вещество, которое идет от звезды-спутника, может еще до того, как станет невидимым в недрах черной дыры, разогреться до такой степени, что начнет испускать рентгеновское излучение. По движению видимой звезды можно рассчитать массу рентгеновского источника. Считают, что у рентгеновского источника Лебедь Х-1 масса компактного объекта превышает три солнечных массы. Этот компактный объект уже не может быть нейтронной звездой; не является ли он черной дырой?

Умирающие звезды превращаются в компактные объекты, в которых вещество связано навечно. Однако прежде они выбрасывают часть своей массы в пространство - это то вещество, которое может послужить для образования новых звезд. И то вещество, из которого состоят наши собственные тела, по меньшей мере однажды кипело в недрах какой-нибудь звезды. Но почти всегда после звезды остается компактный объект, и в конце концов вся материя во Вселенной будет сосредоточена в остывающих белых карликах, нейтронных звездах и черных дырах, вокруг которых обращаются безрадостные холодные планеты. Похоже, что Вселенную ожидает довольно-таки унылое будущее.

Да, существуют. Черной дырой называется область пространства-времени, в которой гравитационное поле настолько сильно, что даже свет не может покинуть эту область. Это происходит, если размеры тела меньше его гравитационного радиуса rg.

Что это такое?

Черные дыры должны возникать в результате очень сильного сжатия массы , при этом поле тяготения возрастает настолько сильно, что не выпускает ни свет, ни какое-либо другое излучение. Чтобы преодолеть тяготение и вырваться из черной дыры, потребовалась бы вторая космическая скорость – больше световой. Но, согласно теории относительности, никакое тело не может развить скорость, большую скорости света. Поэтому из черной дыры ничто не может вылететь. Оттуда также не может поступать информация. Невозможно узнать, что произошло с тем, кто попал в черную дыру. Уже вблизи дыр резко изменяются свойства пространства и времени.

Теоретическая возможность существования таких областей пространства-времени вытекает из некоторых точных решений уравнений Эйнштейна. Проще говоря, Эйнштейн предсказал удивительные свойства черных дыр , из которых важнейшее – наличие у черной дыры горизонта событий. Согласно новейшим данным наблюдений, черные дыры действительно существуют и им присущи удивительные свойства. Существование черных дыр вытекает из теории гравитации: если эта теория верна, то истинным является существование черных дыр. Поэтому утверждения о непосредственных доказательствах существования чёрных дыр следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности. Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре - например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса.

Невращающаяся черная дыра

Для невращающейся черной дыры радиус горизонта событий совпадает с гравитационным радиусом. На горизонте событий для внешнего наблюдателя ход времени останавливается. Космический корабль, посланный к черной дыре, с точки зрения далекого наблюдателя никогда не пересечет горизонт событий, а будет непрерывно замедляться по мере приближения к нему. Все, что происходит под горизонтом событий, внутри черной дыры, внешний наблюдатель не видит. Космонавт в своем корабле в принципе способен проникнуть под горизонт событий, но передать какую-либо информацию внешнему наблюдателю он не сможет. При этом космонавт, свободно падающий под горизонтом событий, вероятно, увидит другую Вселенную и даже свое будущее. Это связано с тем, что внутри черной дыры пространственная и временная координаты меняются местами, и путешествие в пространстве здесь заменяется путешествием во времени.

Вращающаяся черная дыра

Ее свойства еще более удивительны. У них горизонт событий имеет меньший радиус, он погружен внутрь эргосферы – такой области пространства-времени, в которой тела должны непрерывно двигаться, подхваченные вихревым гравитационным полем вращающейся черной дыры.
Эти необычные свойства черных дыр кажутся просто фантастическими, поэтому их существование в природе часто ставится под сомнение.

Черная дыра в составе двойной звездной системы

В этом случае наиболее сильно проявляются эффекты черной дыры, т.к. в двойной звездной системе одна звезда – яркий гигант, а вторая - черная дыра. Газ из оболочки звезды-гиганта вытекает к черной дыре, закручивается вокруг нее, образуя диск. Слои газа в диске по спиральным орбитам приближаются к черной дыре и падают в нее. Но до падения у границы черной дыры газ разогревается в результате трения до огромной температуры в миллионы градусов и излучает в рентгеновском диапазоне. По этому рентгеновскому излучению черные дыры и находят в двойных звездных системах.

Заключение

Предполагается, что массивные черные дыры возникают в центрах компактных звездных скоплений. Возможно, рентгеновский источник в созвездии Лебедя – Лебедь-Х-1 и есть такая черная дыра.

Астрономы не исключают, что в прошлом черные дыры могли возникать в начале расширения Вселенной, поэтому не исключено образование очень маленьких черных дыр.

Значения масс большого числа нейтронных звезд и черных дыр подтверждают справедливость предсказаний теории относительности А. Эйнштейна. В последние годы проблема гипотезы черных дыр во Вселенной превратилась в наблюдательную реальность. Это означает качественно новый этап в исследованиях черных дыр и их удивительных свойств, есть надежда на новые открытия в этой области.

Да, существуют. Черной дырой называется область пространства-времени, в которой гравитационное поле настолько сильно, что даже свет не может покинуть эту область. Это происходит, если размеры тела меньше его гравитационного радиуса rg.

Что это такое?

Черные дыры должны возникать в результате очень сильного сжатия массы , при этом поле тяготения возрастает настолько сильно, что не выпускает ни свет, ни какое-либо другое излучение. Чтобы преодолеть тяготение и вырваться из черной дыры, потребовалась бы вторая космическая скорость – больше световой. Но, согласно теории относительности, никакое тело не может развить скорость, большую скорости света. Поэтому из черной дыры ничто не может вылететь. Оттуда также не может поступать информация. Невозможно узнать, что произошло с тем, кто попал в черную дыру. Уже вблизи дыр резко изменяются свойства пространства и времени.

Теоретическая возможность существования таких областей пространства-времени вытекает из некоторых точных решений уравнений Эйнштейна. Проще говоря, Эйнштейн предсказал удивительные свойства черных дыр , из которых важнейшее – наличие у черной дыры горизонта событий. Согласно новейшим данным наблюдений, черные дыры действительно существуют и им присущи удивительные свойства. Существование черных дыр вытекает из теории гравитации: если эта теория верна, то истинным является существование черных дыр. Поэтому утверждения о непосредственных доказательствах существования чёрных дыр следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности. Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре - например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса.

Невращающаяся черная дыра

Для невращающейся черной дыры радиус горизонта событий совпадает с гравитационным радиусом. На горизонте событий для внешнего наблюдателя ход времени останавливается. Космический корабль, посланный к черной дыре, с точки зрения далекого наблюдателя никогда не пересечет горизонт событий, а будет непрерывно замедляться по мере приближения к нему. Все, что происходит под горизонтом событий, внутри черной дыры, внешний наблюдатель не видит. Космонавт в своем корабле в принципе способен проникнуть под горизонт событий, но передать какую-либо информацию внешнему наблюдателю он не сможет. При этом космонавт, свободно падающий под горизонтом событий, вероятно, увидит другую Вселенную и даже свое будущее. Это связано с тем, что внутри черной дыры пространственная и временная координаты меняются местами, и путешествие в пространстве здесь заменяется путешествием во времени.

Вращающаяся черная дыра

Ее свойства еще более удивительны. У них горизонт событий имеет меньший радиус, он погружен внутрь эргосферы – такой области пространства-времени, в которой тела должны непрерывно двигаться, подхваченные вихревым гравитационным полем вращающейся черной дыры.
Эти необычные свойства черных дыр кажутся просто фантастическими, поэтому их существование в природе часто ставится под сомнение.

Черная дыра в составе двойной звездной системы

В этом случае наиболее сильно проявляются эффекты черной дыры, т.к. в двойной звездной системе одна звезда – яркий гигант, а вторая - черная дыра. Газ из оболочки звезды-гиганта вытекает к черной дыре, закручивается вокруг нее, образуя диск. Слои газа в диске по спиральным орбитам приближаются к черной дыре и падают в нее. Но до падения у границы черной дыры газ разогревается в результате трения до огромной температуры в миллионы градусов и излучает в рентгеновском диапазоне. По этому рентгеновскому излучению черные дыры и находят в двойных звездных системах.

Заключение

Предполагается, что массивные черные дыры возникают в центрах компактных звездных скоплений. Возможно, рентгеновский источник в созвездии Лебедя – Лебедь-Х-1 и есть такая черная дыра.

Астрономы не исключают, что в прошлом черные дыры могли возникать в начале расширения Вселенной, поэтому не исключено образование очень маленьких черных дыр.

Значения масс большого числа нейтронных звезд и черных дыр подтверждают справедливость предсказаний теории относительности А. Эйнштейна. В последние годы проблема гипотезы черных дыр во Вселенной превратилась в наблюдательную реальность. Это означает качественно новый этап в исследованиях черных дыр и их удивительных свойств, есть надежда на новые открытия в этой области.