Воздействие на окружающую среду от использования электроэнергии. Энергетические ресурсы. Особенности воздействия энергетики на природную окружающую среду. Альтернативная энергетика и экология: факты

Экологические аспекты, в частности влияние электроустановок на окружающую среду – один из важнейших вопросов в энергетике. Любая электроустановка в той или иной мере оказывает негативное влияние на окружающую среду, в том числе и на живых существ – от насекомых до человека. Рассмотрим, какие негативные последствия оказывают электроустановки окружающей среде и основные меры, которые принимаются для исключения их негативного влияния.

Энергетика входит как подсистема в глобальную систему жизнедеятельности страны. Развитие и жизнь общества в настоящее время невозможны без энергетики, которая определяет прогресс всего народного хозяйства. Однако при рассмотрении достоинств энергетики необходимо учитывать также отрицательное влияние энергетики на окружающую среду. Все проявления вредного влияния, которое оказывается на окружающую среду различными электротехническими объектами, можно разделить на группы:

1. Загрязнение воздуха, воды и почвы отходами при сжигании топлива на ТЭС электростанциях в виде газов, золы, серы и др., выбрасываемых в воздух, почву и воду и от захоронения использованных радиоактивных веществ на АЭС. Для уменьшения этого следует применять лучшее топливо и специальные очистные сооружения (электрофильтры и др.).

2. Выделение неиспользованной энергии в окружающую среду в виде теплоты отходящих газов и нагрев охлаждающей воды.

3. Влияние электромагнитного поля на живые организмы.

4. Увеличение шума.

5. Изъятие из пользования земли и воды.

6. Эстетическое воздействие линий.

Одним из наиболее важных экологических аспектов является защита человека от факторов негативного влияния электроустановок. В первую очередь – это негативное влияние электромагнитных полей на организм человека .

В данном случае основной мерой, направленной на предотвращение негативного , является сокращение времени нахождения человека в зоне влияния электрического поля. В электроустановках напряжением 110 кВ и выше, где напряженность электрического поля превышает установленные нормы, используют специальные защитные экранирующие комплекты.

Кроме того, существенное влияние на организм человека оказывает электромагнитное поле высоковольтных воздушных линий электропередач. Поэтому запрещается строительство жилых домов и других зданий и сооружений в пределах охранной зоны линий электропередач. Также рекомендуется исключить или свести к минимуму время пребывания человека в непосредственной близости к высоковольтным линиям.

Еще один фактор негативного влияния электроустановок на организм человека – поражение электрическим током, а также термическое действие электрической дуги . Безопасность человека в отношении поражения электрическим током в электроустановках – это основная задача. В данном случае основными мерами, направленными на предотвращение возникновения несчастных случаев в электроустановках, являются:

Соблюдение правил техники безопасности и нормативных актов по охране труда;

Применение необходимых средств защиты;

Своевременное обнаружение, устранение неисправностей и других отклонений от нормального режима работы оборудования;

Совершенствование рабочих мест;

Улучшение условий труда.

Следует также отметить воздействие вредных веществ на человека. Например, в электрических распределительных устройствах, оборудованными , есть вероятность отравления элегазом по причине его утечки из поврежденного выключателя.

Еще один пример – кислотная аккумуляторная батарея. В данном случае особую опасность несет в себе серная кислота, которая может попасть на кожу человека или в дыхательные пути.

Следующий экологический аспект – гибель птиц на линиях электропередач и в открытых распределительных устройствах подстанций . Каждый год очень большое количество птиц гибнет в результате поражения электрическим током. Для предотвращения гибели птиц на линиях электропередач на опорах устанавливают специальные устройства, которые препятствуют посадке на них птиц.

На открытых распределительных устройствах подстанций особую опасность для птиц представляют высоковольтные выводы силовых трансформаторов, линейные вводы в закрытые распределительные устройства и другие элементы оборудования. В данном случае, для предотвращения гибели птиц устанавливаются сетчатые ограждения, кожухи на элементы оборудования, где наиболее часто происходит гибель птиц.

В процессе возможно загрязнение окружающей среды вредными веществами . Это может быть: электролит, трансформаторное масло и другие нефтепродукты, бытовые отходы и другие вредные вещества.

Для предотвращения загрязнения окружающей среды необходимо строго соблюдать нормативные документы и инструкции по эксплуатации оборудования, правила обращения с вредными веществами и др., хранить отходы и вредные вещества в специально отведенных для этого местах.

Электромагнитные поля электроустановок оказывают некоторое влияние на насекомых и растения. В зоне влияния электрического поля у насекомых и бабочек появляются нехарактерные признаки поведения, у пчел значительно снижается продуктивность, а также появляется вероятность потери маток.

Растения, которые растут вдоль линий электропередач, а также на территории электроустановок могут наблюдаться аномалии развития: появление лишних лепестков, изменение размеров цветений, стеблей, листьев.

Взаимодействие энергетического предприятия с окружающей средой происходит на всех стадиях добычи и использования топлива, преобразования и передачи энергии. Тепловой электростанцией активно потребляется воздух. Образующиеся продукты сгорания передают основную часть теплоты рабочему телу энергетической установки, часть теплоты рассеивается в окружающую среду, а часть - уносится с продуктами сгорания через дымовую трубу в атмосферу. Продукты сгорания, выбрасываемые в атмосферу, содержат оксиды азота, углерода, серы, углеводорода, пары воды и др. вещества в твердом, жидком и газообразном состояниях.

Удаляемые из топки зола и шлак образуют золошлакоотвалы на поверхности литосферы. В паропроводах от парогенератора к турбогенератору, в самом турбогенераторе происходит потеря тепла в окружающую среду. В конденсаторе, а также в системе регенеративного подогрева питательной воды теплота конденсации и переохлаждения конденсата воспринимается охлаждаемой водой внешнего водоема.

Кроме конденсаторов турбогенераторов,

потребителями охлаждающей воды являются маслоохладители, системы смыва золы и шлака и другие вспомогательные системы, выделяющие сливы на поверхность воды или в гидросферу.

Одним из факторов воздействия угольных станций на окружающую среду являются выбросы систем складирования топлива, его транспортировки, пылеприготовления и золоудаления. При транспортировке и складировании возможны не только пылевое загрязнение, но и выделения продуктов окисления топлива на складах.

Распространение перечисленных выбросов в атмосферу зависит от рельефа местности, скорости ветра, перегрева их по отношению к температуре окружающей среды, высоты облачности, фазового состояния осадков и их интенсивности. Так, крупные градирни в системе охлаждения конденсаторов электростанций существенно увлажняют микроклимат в районе станций, способствуют образованию низкой облачности, туманов, снижению солнечной освещенности, вызывают моросящие дожди, а в зимнее время - иней и гололед. Взаимодействие выбросов с туманом приводит к образованию устойчивого сильно загрязненного мелкодисперсного облака - смога, наиболее плотного у поверхности земли. Одним из видов воздействия станций на атмосферу является всё возрастающее потребление воздуха, необходимого для сжигания топлива.

Взаимодействие тепловой станции с гидросферой характеризуется в основном потреблением воды системами технического водоснабжения, в том числе безвозвратным потреблением воды.

Основными потребителями воды на ТЭС и АЭС являются конденсаторы турбин. Расход воды зависит от начальных и конечных параметров пара и от системы технического водоснабжения.

При промывке поверхностей нагрева котлоагрегатов образуются разбавленные растворы соляной кислоты, едкого натра, аммиака, солей аммония, железа и других веществ.

Основными факторами воздействия ТЭС на гидросферу являются выбросы теплоты, следствиями которых могут быть: локальное постоянное повышение температуры в водоеме; временное общее повышение температуры; изменение условий ледостава, зимнего гидрологического режима; изменение условий паводков; изменение распределения осадков, испарений, туманов. Наряду с нарушением климата тепловые выбросы приводят к зарастанию водоемов водорослями, нарушению кислородного баланса, что создает угрозу для жизни обитателей рек и озер.

Основными факторами воздействия ТЭС на литосферу является осаждение на её поверхности твердых частиц и жидких растворов - продуктов выбросов в атмосферу, потребление ресурсов литосферы, в т.ч. вырубка лесов, добыча топлива, изъятие из сельскохозяйственного оборота пахотных земель и лугов под строительство ТЭС и для устройства золоотвалов. Следствием этих преобразований является изменение ландшафта.

При нормальной эксплуатации АЭС дают значительно меньше вредных выбросов в атмосферу, чем ТЭС, работающие на органическом топливе. Так, работа АЭС не влияет на содержание кислорода и углеродного газа в атмосфере, не меняет её химического состояния.

Основными факторами загрязнения окружающей среды здесь выступают радиационные показатели. Радиоактивность контура ядерного реактора обусловлена активизацией продуктов коррозии и проникновением продуктов деления в теплоноситель, а также наличием трития. Наведенной активности подвергаются практически все вещества, взаимодействующие с радиоактивными излучениями. Прямой выход радиоактивных отходов ядерных реакций в окружающую среду предотвращается многоступенчатой системой радиационной защиты. Наибольшую опасность представляют аварии на АЭС и неконтролируемое распространение радиации.

Вторая проблема эксплуатации АЭС - тепловое загрязнение. Основное тепловыделение АЭС в окружающую среду, как и на ТЭС, происходит в конденсаторах паротурбинных установок. Однако большие удельные расходы пара у АЭС определяют

и большие удельные расходы воды. Сбросы охлаждающей воды ядерных энергетических установок не исключают их радиационного воздействия на водную среду, в частности, поступления радионуклидов в гидросферу.

Важными особенностями возможного воздействия АЭС на окружающую среду являются переработка"радиоактивных отходов, которые образуются не только на АЭС, но и на всех предприятиях топливного цикла, а также необходимость демонтажа и захоронения элементов оборудования, обладающих радиоактивностью.

ГЭС оказывают существенное влияние на природную среду, которое проявляется как в период строительства, так и при эксплуатации. Сооружение водохранилищ перед плотинами ГЭС приводит к затоплению территорий. Изменение гидрологического режима и затопление территорий вызывают изменения гидрохимического, гидробиологического и гидрогеологического режимов водных масс. При интенсивном испарении влаги с поверхности водохранилищ возможны локальные изменения климата: повышение влажности воздуха, образование туманов, усиление ветров и т.п.

Сооружения ГЭС существенно влияют на ледовый режим водных масс: на сроки ледостава, толщину ледяного покрова и т.п.

При сооружении крупных водохранилищ ГЭС создаются условия для развития сейсмической активности, что обусловлено возникновением дополнительной нагрузки на земную кору и интенсификацией тектонических процессов.

Энергетика – один из источников неблагоприятного воздействия на окружающую среду и человека. Краткая экологическая характеристика основных объектов электроэнергетики, на базе которых может осуществляться ее развитие, свидетельствует о том, что все они оказывают то или иное отрицательное воздействие на окружающую среду. Практически нет объектов, которые совсем не влияют на окружающую среду.

Энергетика влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).

Тепловые электростанции, сжигающие органические виды топлива, неблагоприятно влияют практически на все сферы окружающей среды и подвергают природу всем рассмотренным видам воздействий, включая выбросы радиоактивных веществ в составе летучей золы дымовых газов, которые по оценкам ряда специалистов превышают объем радиационных выбросов АЭС при их нормальной эксплуатации. Радиоактивные вещества, содержащиеся в первичном топливе, выносятся за пределы ТЭС с твердыми частицами (золой) и рассеиваются с дымовыми газами на огромной территории.

Отрицательное воздействие ТЭС усугубляется тем, что их работа должна обеспечиваться постоянной добычей топлива (топливная база), сопровождаемой дополнительными отрицательными воздействиями на окружающую среду: загрязнением воздушного бассейна, воды и земли; расходом земельных и водных ресурсов, истощением невозобновляемых запасов топлива (природных ископаемых ресурсов).

Загрязнение природной среды происходит также при транспортировании топлива, как в виде его прямых потерь, так и в результате расхода энергоресурсов на его перевозку, которая в среднем по территории России производится на расстоянии около 800 км.

Общая сумма позиций, по которым определяется отрицательное воздействие объектов электроэнергетики на окружающую среду, оказалась наибольшей для ТЭС, использующих органическое топливо.

По такой качественной оценке воздействия на окружающую среду на втором месте находятся атомные электростанции с их топливной базой. Среди факторов неблагоприятного воздействия АЭС такие грозные, как радиационная опасность.

Среди большого числа загрязнителей воздуха (более 200) выделяются пять основных, на долю которых приходится 90-95 % валового выброса вредных веществ в различных регионах страны. К ним относятся: твердые частицы (пыль, зола); оксиды серы; оксиды азота; оксиды углерода; углеводороды. В электроэнергетике к основным загрязняющим атмосферу веществам относятся три первых. Выбросы электроэнергетики достигают 1/3 общего количества вредных веществ, поступающих в атмосферу от стационарных источников.

Количество вредных веществ, выбрасываемых в атмосферу электростанциями за 10-летний период заметно снизилось, хотя выработка электроэнергии за тот же период возросла на 27 %. Это снижение обеспечено за счет изменения структуры генерирующих мощностей, совершенствования систем золоочистки, увеличения доли используемого природного газа, уменьшения количества сжигаемого на электростанциях высокосернистого мазута и снижения средней сернистости углей.

По уровню опасности основные выбросы электростанций относятся к III классу, т.е. не являются самыми опасными. Наряду с рассмотренными выше основными загрязняющими атмосферу веществами в дымовых газах электростанций имеется некоторое количество еще более вредных, в том числе канцерогенных, веществ, относящихся к I классу опасности. Установлено, что существенные количества канцерогенных веществ образуются при слоевом сжигании топлива. Сжигание же топлива в пылеугольных топках снижает количество выбросов канцерогенных веществ на четыре порядка. Бензапирен и другие канцерогенные вещества хоть и присутствуют в продуктах сгорания электростанций, но в таких небольших дозах, что определяют не более 3-4 % токсичности продуктов сгорания мощных ГРЭС.

Строительство крупных ТЭС, сжигающих твердое топливо в пылеугольных топках или природный газ, способно существенным образом улучшить канцерогенную обстановку в населенных пунктах за счет отказа от большого числа мелких котельных, в выбросах которых на четыре порядка больше канцерогенных веществ, чем у крупных электростанций. Тем более что и осуществляются эти выбросы через низкие трубы, не способствующие их достаточному рассеиванию.

При сгорании в топках котлов электростанций органического топлива образуются твердые и газообразные вредные вещества (так называемые «отходящие»), транспортируемые в составе дымовых газов по газоходам котла в дымовую трубу. Часть «отходящих» вредных компонентов поглощается другими составляющими дымовых газов (например, оксиды серы частично поглощаются золой) в котле и в процессе движения по газоходам. На выходе из дымовой трубы они улавливаются специальными устройствами, например золоуловителями. Все, что не поглощено и не уловлено, выбрасывается в атмосферу. Эти не уловленные и не поглощенные вредные вещества называются «вредными выбросами» или просто «выбросами».

С дымовыми газами ТЭС в атмосферу поступает большое количество различных вредных веществ. Самая большая доля их приходится на золу (твердые частицы), оксиды серы и азота, выбросы которых нормируются и рассчитываются на перспективу.

Другие выбросы (СО и СО 2) не учитываются и не контролируются, т. к. в условиях нормальной эксплуатации монооксид углерода в выбросах ТЭС отсутствует. В связи с этим выбросы монооксида углерода не учитываются, как и выбросы диоксида СО 2 , объем которого очень велик. Этот газ не токсичен и в природном цикле служит источником получения кислорода в процессе фотосинтеза растений.

Ученые ряда стран отмечают нарастание концентрации СО 2 в атмосферном воздухе, что, по-видимому, является результатом увеличения его выброса в связи с сжиганием все возрастающего количества органического топлива в мире, в том числе и на электростанциях, а также сокращения площади лесных массивов из-за интенсивной вырубки лесов во всех регионах Земли, и особенно в бассейне р. Амазонки, леса которого по праву считаются легкими планеты. Повышение концентрации СО 2 в атмосфере планеты способно оказать глобальное влияние на климат планеты, создавая так называемый «парниковый эффект», ведущий к увеличению средней температуры воздуха, таянию ледников, повышению уровня мирового океана, затоплению обширных прибрежных районов Земли и другим неблагоприятным воздействиям.

При экологическом сопоставлении вариантов развития электроэнергетики следует учитывать, что при прочих равных условиях источники электроэнергии, сжигающие органические виды топлива и выбрасывающие большое количество СО 2 , имеют определенный минус по сравнению с электростанциями, принципиально не влияющими на создание «парникового эффекта». К их числу относятся в первую очередь гидроэлектростанции, а также АЭС и электростанций на альтернативных источниках.

Говоря о воздействии на температурные условия окружающей среды, уместно, по-видимому, остановиться на нарушениях теплового баланса в результате прямых выбросов теплоты, связанных с работой электростанций.

Практически вся тепловая энергия, выделяющаяся при использовании топлива (как органического, так и ядерного), идет на пополнение теплового баланса планеты и, естественно, баланса того локального района, в котором размещается электростанция. При сжигании органического топлива в окружающую среду дополнительно поступает та тепловая энергия, которая была накоплена в нем за миллионы лег существования Земли. Дополнительное поступление теплоты в окружающую среду связано в первую очередь с несовершенством процесса преобразования тепловой энергии в электрическую (КПД преобразования для обычных ТЭС находится на уровне 35 %, а для АЭС 30 %). Имеют место тепловые потери в электрических сетях (8-10 %), потери в процессе преобразования электроэнергии в энергию механическую, тепловую и т. д.

Сравнивая воздействие различных источников электроэнергии на окружающую среду, необходимо принимать во внимание только тот прирост теплоты в общем тепловом балансе Земли или района, который связан с различными условиями использования первичных энергоресурсов.

В этом отношении наиболее чистыми источниками являются гидроэлектростанции, которые практически не влияют на тепловой баланс Земли. Они, по существу, позволяют полезно использовать только ту возобновляемую часть солнечной энергии, которая постоянно поступает на Землю и формирует ее естественный тепловой баланс.

При создании гидроэлектростанций значительная часть потенциальной энергии водотока превращается в электрическую энергию, которая полезно расходуется в народном хозяйстве. Коэффициент полезного действия ГЭС высок и находится на уровне 90-95 %.

Тепловая электростанция для производства такого же количества электроэнергии нуждается в использовании невозобновляемой энергии, накопленной в топливе, которая в меру своих масштабов нарушает тепловой баланс планеты.

Тепловой баланс АЭС складывается еще хуже. Полезно используемая энергия современных АЭС составляет только 1/3 энергии, выделяемой в результате ядерных реакций. Энергетический блок АЭС мощностью 1 млн. кВт имеет тепловую мощность 3 млн. кВт. Соответственно при развитии АЭС возрастают размеры поступления теплоты в баланс Земли и концентрированно в тепловой баланс района размещения АЭС.

Огромное количество сбросной тепловой энергии ТЭС и АЭС является потенциальным ресурсом для его полезного использования.

Надежные способы оценки реального вклада выбросов теплоты ТЭС и АЭС в глобальное потепление климата на Земле в настоящее время отсутствуют. Поэтому при сопоставлении вариантов развития электроэнергетики вклад электростанций в нарушение теплового баланса Земли можно учитывать только качественно, имея в виду, что практически чистыми в этом отношении являются только гидроэлектростанции, а из ТЭС и АЭС предпочтение по этому показателю должно отдаваться ТЭС на органических видах топлива.

Наименьшее количество воздействий среди традиционных источников электроэнергии оказывают гидроэлектростанции. Это дает основание считать их наиболее экологически чистыми источниками электроэнергии из числа традиционных. При этом ряд сред (воздух, земля) вообще не загрязняется при работе гидроэлектростанций.

Большое преимущество ГЭС заключается также в том, что их воздействие ограничивается локальными зонами водохранилищ и что они используют только возобновляемую энергию водотока, не нуждаются в топливных базах и транспортировании топлива и не расходуют невозобновляемых полезных ископаемых.

Среди неблагоприятных воздействий ГЭС главным является затопление обширных территорий, которое и определяет экологическое лицо ГЭС.

Число отрицательных воздействий на окружающую среду нетрадиционных источников электроэнергии, как правило, невелико, за исключением геотермальных электростанций.

Увеличение мощности и выработки электроэнергии, необходимое для обеспечения прироста потребительского спроса на электроэнергию, создает предпосылки для усиления отрицательного воздействия электроэнергетики на окружающую среду. Дополнительные воздействия могут выражаться в изъятии земельных и водных ресурсов, загрязнении земель, вод и атмосферного воздуха.

В связи с этим одной из важнейших проблем экологической оптимизации развития электроэнергетики является всемерное сокращение этих воздействий с использованием различных природоохранных мероприятий.

Среди природоохранных мероприятий в электроэнергетике могут быть выделены две принципиально различные группы.

К первой из них относятся технические мероприятия, осуществляемые на объектах электроэнергетики и способствующие сокращению на них вредных выбросов и сбросов, снижению концентрации вредных веществ, а также ресурсосбережение, утилизация отходов производства и т. д.

Ко второй группе природоохранных мероприятий могут быть отнесены такие, которые обеспечивают снижение отрицательного воздействия на окружающую среду за счет оптимизации топливно-энергетического баланса электроэнергетики, оптимизации структуры и размещения электростанций.

Возможности первой группы природоохранных мероприятий определяются техническим прогрессом в энергомашиностроении, качеством разработки проектных решений по объектам электроэнергетики, полнотой учета при проектировании требований охраны окружающей среды, экономической и социальной приемлемостью предлагаемых решений.

Мероприятия второй группы исследуются и применяются с учетом того, что на объектах в полной мере реализуются мероприятия первой группы, т.е. мероприятия второй группы не заменяют, а дополняют комплекс мероприятий первой группы. Возможности второй группы природоохранных мероприятий в структурной оптимизации определяются качественными и количественными характеристиками топливно-энергетических ресурсов рассматриваемого региона, набором альтернативных источников, которые могут быть использованы для покрытия прироста электропотребления (ГЭС, АЭС, ГРЭС и т. д.), их размещением, экологическими и экономическими характеристиками.

На условия оптимизации развития и размещения объектов электроэнергетики существенное влияние может оказать состояние окружающей среды в районе, включая наличие земельных и водных ресурсов, уровень фонового загрязнения окружающей среды. Очевидно, что в случае повышенного уровня загрязненности окружающей среды могут возникнуть условия, при которых размещение здесь электростанции без нарушения санитарных норм окажется невозможным даже при использовании всех доступных мероприятий первой группы. В этом случае радикальным средством охраны природы в данном районе может быть вынос электростанции в другой, более благоприятный в экологическом отношении район, либо изменение вида топлива или типа электростанции. Важно при этом подчеркнуть, что в любых вариантах развития и размещения электростанций, при любом наборе объектных природоохранных мероприятий обязательным является обеспечение норм охраны природной среды и безопасности человека.

Из изложенного следует, что реализация системных мероприятий в значительной мере зависит от специфических особенностей рассматриваемого региона, которые в каждом отдельном случае должны изучаться индивидуально.

Как влияет энергетика на окружающую среду?

Защита окружающей человека среды, как это всем хорошо известно, - одна из важнейших глобальных проблем. Мы остановимся только на той части проблемы, которая связана с электростанциями. Воздействие на окружающую среду различных типов электростанций (ТЭС, ГЭС, АЭС) различно, и поэтому рассмотрим каждый из этих трех случаев отдельно.

Пожалуй, наибольшее отрицательное воздействие на окружающую среду в настоящее время оказывают ТЭС. Их воздействие заключается в загрязнении атмосферы мелкими твердыми частицами золы (Так как большинство ТЭС использует в качестве топлива мелкоизмельченный (в специальных мельницах) уголь, унос мелких частиц несгоревшего угля ничтожен; коэффициент избытка воздуха в топке всегда больше единицы (примерно на 20%). )и особенно выбросами с уходящими газами окислов серы (если, конечно, сера содержится в топливе, что бывает сплошь и рядом) и окислов азота.

Что касается выбросов мелких частиц золы, то для борьбы с этим злом налажен массовый выпуск фильтров с КПД 95 - 99%. Можно было бы считать этот вопрос решенным, если бы на многих электростанциях, работающих на угле, фильтры не находились бы в столь безобразном состоянии, что их КПД снижается до 80% и даже еще более. Но это уже вопрос порядка, дисциплины.

С выбросами окислов серы и азота дело обстоит гораздо сложнее (Окислы серы возникают при сжигании любого топлива (угля, мазута, природного газа), если в нем содержится сера; окислы азота образуются при сжигании любого топлива тем в большем количестве, чем выше температура. ). До настоящего времени не создано эффективно действующих и дешевых фильтров. Однако необходимо отметить, что работа по созданию таких фильтров ведется энергично, и, нужно думать, она будет успешно завершена к 2000 г., а может быть, и ранее. Пока что для избежания предельных концентраций SO X и NO 2 в местах расположения электростанций строятся высокие выхлопные трубы - до 320 - 350 м.

Следует заметить, что окислы углерода, когда речь идет о тепловых электростанциях, не создают сколько-нибудь серьезных затруднений. Продукт неполного сгорания углерода СО, вредно действующий на людей даже в малых концентрациях, в продуктах сгорания ТЭС практически отсутствует. Как уже говорилось выше, причиной этого является большой избыток воздуха.

Выбросы углекислого газа СО 2 , который независимо от человеческой деятельности входит в состав атмосферы в количестве около 0,03% по объему, обращают на себя внимание главным образом с точки зрения увеличения так называемого парникового эффекта атмосферы и связанного с этим возможного повышения температуры атмосферы. Сущность парникового эффекта в том, что атмосфера Земли прозрачна для основной части излучения Солнца (в оптическом диапазоне). В атмосфере Земли излучение поглощается молекулами СО 2 , Н 2 О и другими, именно поэтому увеличение углекислоты в атмосфере Земли может привести к повышению ее (атмосферы) температуры.

К повышению температуры атмосферы и поверхности Земли может привести также увеличение производства и потребления энергии. Необходимо помнить, что вся произведенная энергия, согласно второму началу термодинамики, в конце концов превратится в тепло.

Все эти рассуждения о росте температуры атмосферы и поверхности Земли были, однако, поколеблены проведенными наблюдениями. С начала XX в. до 40-х годов среднегодовая температура повысилась приблизительно на 0,7° С, а площадь арктических льдов уменьшилась на 10%. Объясняли это увеличением концентрации СО 2 в атмосфере и ростом производства и потребления энергии.

Но за последующие приблизительно 30 лет, несмотря на рост выбросов СО 2 в 2 раза к продолжающееся увеличение производства и потребления энергии, происходило и продолжает происходить снижение температуры, которая может скоро приблизиться к уровню конца XIX в.

Что все это означает? Только то, что мы еще плохо знаем описываемые процессы. Многие считают, что до сих пор не принималось во внимание значение аэрозолей - находящихся во взвешенном состоянии мельчайших твердых частиц и капель жидкости. Рассмотрение этой гипотезы ведется.

Что касается жидкой фазы (рек, озер, прудов), то ТЭС сколько-нибудь существенно их не загрязняют. Надо только внимательно следить, чтобы нагрев воды, например пруда, не превысил допустимых пределов. В случае чего всегда есть запасной вариант - градирня. Умеренный нагрев пруда может быть даже полезным - содействовать рыбному хозяйству.

Разговор о воздействии ТЭС на окружающую среду можно было бы считать на этом исчерпанным. Но нам хочется, несколько выходя за рамки установленной программы, поставить такой вопрос: какие источники загрязнения наиболее существенны для атмосферы?

Для развитых стран, особенно для больших городов, это автомобиль. В ФРГ, например, на долю ТЭС приходится около 25% всего используемого топлива, а на долю автомобилей - около 12%. В то же время в загрязнении воздушной среды на долю ТЭС приходится примерно 9% (это, конечно, немало, но, как сказано выше, есть реальные возможности резкого снижения этой цифры), а на долю автомобилей 50%.

Дело заключается в том, что в автомобилях (с карбюраторными двигателями) плохо сжигается топливо. Автомобили имеют, в частности, в отработавших продуктах сгорания много СО и NO x .

Вслед за автомобилями большое загрязнение атмосферы приносят отопительные (особенно нецентрализованные) установки, а также выхлопные газы предприятий.

Промышленные предприятия (особенно целлюлозно-бумажной, химической и нефтехимической промышленности, цветной металлургии и некоторые другие) - главные загрязнители водных объектов. Поэтому особо большое внимание должно уделяться очистным сооружениям. Кардинальное решение проблемы - создание предприятий с использованием воды в замкнутом контуре. Переходим теперь к ГЭС. Всего несколько десятилетий назад широкое распространение получила неправильная точка зрения о том, что ГЭС якобы не могут отрицательно влиять на окружающую среду. К сожалению, как об этом говорилось выше, дело обстоит не так.

На вопрос о том, можно ли сказать, что ГЭС настолько отрицательно влияют на окружающую среду, что их не надо строить вовсе, или, наоборот, влияние ГЭС на окружающую среду настолько мало, что их ничтоже сумняшеся можно строить дальше, единого ответа дать нельзя. В некоторых конкретных случаях их строить можно и должно, а в некоторых - нет.

В наибольшей мере объективный ответ на этот вопрос зависит от характеристики будущего водохранилища. Поэтому, повторяем, ответ о целесообразности строительства каждой конкретной ГЭС должен рассматриваться самостоятельно. К важнейшим характеристикам водохранилища относятся: размер зеркала водохранилищ, наличие в водохранилищах мелководий, влияние водохранилищ на местный климат, состояние почв и растительности, а также на рыбное хозяйство и водный (речной) транспорт.

Нельзя дать каких-либо твердых цифровых показателей типа: если на тысячу установленных киловатт ГЭС приходится не более n квадратных километров зеркала водохранилища, то ГЭС строить можно, а если больше, то - нет. Надо, конечно, учитывать, насколько ценные земли (главным образом с точки зрения сельского хозяйства) будут затоплены.

Большим бедствием являются водохранилища, большую часть которых составляют мелководья. Возникают они в случаях, когда плотины ГЭС сооружаются в равнинной местности, например волжские ГЭС. Вода мелководий интенсивно прогревается солнцем, что создает благоприятные условия для развития сине-зеленых водорослей. Они в большинстве случаев не используются и, разрастаясь, гниют, заражают воду и атмосферу.

Важен также учет интересов речного судоходства. В принципе сооружение ГЭС оказывает двоякое воздействие на судоходство: повышение глубины реки в верхнем бьефе, что для судоходства выгодно, и необходимость (при сквозном движении судов) сооружения шлюзов, что влечет за собой дополнительные капиталовложения.

Два обстоятельства главным образом влияют на рыбное хозяйство. Во-первых, это касается так называемых проходных рыб, совершающих в период нереста миграцию из морей в реки, например из Каспийского моря в Волгу. Воздвижение плотин на пути их миграции может привести к ликвидации очень денных проходных рыб. Попытки создать специальные устройства для миграции проходных рыб пока к успеху не привели.

Во-вторых, дело заключается и в том, что уровень воды в реках, на которых построены плотины ГЭС, подвержен колебаниям, определяемым электрической загрузкой ГЭС и, следовательно, количеством воды, которая должна протекать через ее турбины. Нередки случаи, когда выметанная рыбами икра вблизи поверхности реки гибнет (засыхает) вследствие понижения уровня воды.

Вопросы безопасности ядерных реакторов были рассмотрены выше. Здесь нам остается добавить очень немного. Реакторы ВВР второго поколения, о которых также уже говорилось, должны обладать так называемой внутренней безопасностью.

Это значит, если возникнет аварийная ситуация, а эксплуатационный персонал произведет неправильные действия, реактор все равно остановится.

женская одежда оптом от производителя больших размеров

Чем потенциально опасны атомные электростанции?

Воздействие АЭС на окружающую среду при соблюдении технологии строительства и эксплуатации может и должно быть значительно меньше, чем других технологических объектов: химических предприятий, ТЭЦ. Однако радиация в случае аварии – один из опасных факторов для экологии, человеческой жизни и здоровья. В этом случае выбросы приравниваются к возникающим при испытании ядерного оружия.

Каково воздействие АЭС в нормальных и нештатных условиях, можно ли предотвратить катастрофы и какие меры принимаются для обеспечения безопасности на ядерных объектах?

Развитие и значение атомных электростанций

Первые исследования по ядерной энергетике пришлись на 1890-е гг., а строительство крупных объектов началось с 1954 г. Атомные электростанции возводятся для получения энергии путем радиоактивного распада в реакторе.

Сейчас используются такие типы реакторов третьего поколения:

  • легководные (наиболее распространенные);
  • тяжеловодные;
  • газоохлаждаемые;
  • быстро-нейтронные.

В период с 1960 г. по 2008 г. в мире были введены в работу около 540 атомных реакторов. Из них около 100 закрылись по разным мотивам, в том числе из-за негативного воздействия АЭС на природу. До 1960 г. реакторы отличались высоким показателем аварийности из-за технологического несовершенства и недостаточной проработки регулирующей нормативной базы. В следующие годы требования ужесточались, а технологии совершенствовались. На фоне уменьшения запасов природных энергоресурсов, высокой энергоэффективности урана строились более безопасные и оказывающее меньшее негативное воздействие АЭС.

Для плановой работы атомных объектов добывается урановая руда, из которой обогащением получается радиоактивный уран. В реакторах вырабатывается плутоний – самое токсичное из существующих веществ, полученных человеком. Обработка, транспортировка и захоронение отходов деятельности АЭС требует тщательных мер предосторожности и безопасности.

Факторы воздействия АЭС на окружающий мир

Наряду с прочими промышленными комплексами атомные электростанции оказывают воздействие на природную среду и человеческую жизнедеятельность. В практике использования энергетических объектов нет на 100% надежных систем. Анализ воздействия АЭС проводится с учетом возможных последующих рисков и ожидаемой пользы.

При этом совершенно безопасной энергетики не существует. Воздействие АЭС на окружающую среду начинается с момента возведения, продолжается при эксплуатации и даже по ее окончании. На территории расположения станции по выработке электроэнергии и за ее пределами следует предусматривать возникновение таких негативных влияний:

  • Изъятие земельного участка под строительство и обустройство санитарных зон.
  • Изменение рельефа местности.
  • Уничтожение растительности из-за строительства.
  • Загрязнение атмосферы при необходимости взрывных работ.
  • Переселение местных жителей на другие территории.
  • Вред популяциям местных животных.
  • Тепловое загрязнение, влияющее микроклимат территории.
  • Изменение условий пользования землей и природными ресурсами на определенной территории.
  • Химическое воздействие АЭС – выбросы в водные бассейны, атмосферу и на поверхности почв.
  • Загрязнение радионуклидами, которое может вызвать необратимые изменения в организмах людей и животных.Радиоактивные вещества могут попадать в организм с воздухом, водой и пищей. Против этого и других факторов существуют специальные превентивные меры.
  • Ионизирующее излучение при выводе станции из эксплуатации с нарушением правил демонтажа и дезактивации.

Один из самых значительных загрязняющих факторов – тепловое воздействие АЭС, возникающее при функционировании градирен, охлаждающих систем и брызгальных бассейнов. Они влияют на микроклимат, состояние вод, жизнь флоры и фауны в радиусе нескольких километров от объекта. КПД атомных электростанций составляет около 33-35%, остальное тепло (65-67%) выделяется в атмосферу.

На территории санитарной зоны в результате воздействия АЭС, в частности водоемов-охладителей, выделяются тепло и влага, вызывая повышение температуры на 1-1,5° в радиусе нескольких сот метров. В теплое время года над водоемами образуются туманы, которые рассеиваются на значительное удаление, ухудшая инсоляцию и ускоряя разрушение зданий. При холодной погоде туманы усиливают гололедные явления. Брызговые устройства вызывают еще большее повышение температуры в радиусе нескольких километров.

Охлаждающие воду испарительные башни-градирни испаряют летом до 15%, а зимой до 1-2% воды, формируя пароконденсатные факелы, вызывая на 30-50% уменьшение солнечного освещения на прилегающей территории, ухудшая метеорологическую видимость на 0,5-4 км. Воздействие АЭС сказывается на экологическом состоянии и гидрохимическом составе воды прилегающих водоемов. После испарения воды из охладительных систем в последних остаются соли. Для сохранения стабильного солевого баланса часть жесткой воды приходится сбрасывать, заменяя ее свежей.

В нормальных условиях эксплуатации радиационное заражение и влияние ионизирующего излучения сведены к минимуму и не превышают допустимый природный фон. Катастрофическое воздействие АЭС на окружающую среду и людей может возникнуть при авариях и утечках.

Возможные техногенные воздействия АЭС

Не стоит забывать про техногенные риски, возможные в атомной энергетике. Среди них:

  • Внештатные ситуации с хранением ядерных отработанных веществ. Производство радиоактивных отходов, происходящее на всех этапах топливно-энергетического цикла, требует дорогостоящих и сложных процедур переработки и захоронения.
  • Так называемый «человеческий фактор», который может спровоцировать сбой в работе и даже серьезную аварию.
  • Утечки на предприятиях, перерабатывающих облученное топливо.
  • Возможный ядерный терроризм.

Нормативный срок функционирования АЭС составляет 30 лет. После вывода станции из эксплуатации требуется сооружение прочного, сложного и дорогостоящего саркофага, который придется обслуживать еще очень длительный промежуток времени.

Защита от негативных влияний, их контроль

Предполагается, что воздействие АЭС в виде всех перечисленных выше факторов должно контролироваться на каждом этапе проектирования и эксплуатации станции.Специальные комплексные меры призваны спрогнозировать и предотвратить выбросы, аварии и их развитие, минимизировать последствия.

Важно уметь прогнозировать геодинамические процессы на территории станции, нормировать электромагнитные излучение и шум, воздействующие на персонал. Для размещения энергетического комплекса участок выбирается после тщательного геологического и гидрогеологического обоснования, проводится анализ его тектонического строения. При строительстве предполагается тщательное соблюдение технологической последовательности работ.

Задача науки, обслуживающей и практической деятельности – не допустить чрезвычайных ситуаций, создать нормальные условия для эксплуатации атомных станций. Одним из факторов экозащиты от воздействия АЭС является нормирование показателей, то есть установление допустимых значений того или иного риска и следование им.

Для минимизации воздействия АЭС на окружающую территорию, природные ресурсы и людей проводится комплексный радиоэкологический мониторинг. Чтобы отвратить ошибочные действия работников электростанции, осуществляется многоуровневая подготовка, занятия на учебных тренажерах и другие мероприятия. Для предотвращения террористических угроз применяются физические защитные меры, а также ведется деятельность специальных государственных организаций.

Современные атомные станции создаются с высокими показателями защищенности и безопасности. Они должны соответствовать высочайшим требованиям надзорных органов, включая защиту от загрязнения радионуклидами и другими вредными веществами. Задача науки – снизить риск воздействия АЭС в результате аварии. Для ее решения проводится разработка более безопасных по конструкции реакторов, имеющих внушительные внутренние показатели самозащиты и самокомпенсации.

Насколько безопасно воздействие АЭС на окружающий мир?

В природе существует естественная радиация. Но для экологии опасно интенсивное радиационное воздействие АЭС в случае аварии, а также тепловое, химическое и механическое. Также весьма актуальна проблема с утилизацией ядерных отходов. Для безопасного существования биосферы нужны особые защитные меры и средства. Отношение к строительству атомных электростанций в мире крайне неоднозначно, особенно после ряда крупных катастроф на ядерных объектах.

Восприятие и оценка атомной энергетики в обществе никогда не будут прежними после Чернобыльской трагедии, произошедшей в 1986 году. Тогда в атмосферу попало до 450 разновидностей радионуклидов, включая короткоживущий йод-131 и долгоживущие цезий-131, стронций-90.

После аварии некоторые исследовательские программы в разных странах были закрыты, нормально функционирующие реакторы превентивно прекратили свое действие, а отдельные государства ввели мораторий на ядерную энергетику. Вместе с тем около 16% электроэнергии в мире вырабатывается с помощью АЭС. Заменить атомные электростанции способно развитие альтернативных источников энергии.