Расчет стальных ферм. Расчёт и изготовление металлической фермы для навеса. Виды ферм и формы крыши

Проектирование металлических конструкций - одно из важнейших направлений строительной деятельности. Для определения требуемых параметров профилей используется дорогостоящее лицензионное программное обеспечение, требующее наличия профильного образования и навыков работы с конкретным программным комплексом.

При этом бывают ситуации, когда нужно сделать чертеж «на коленке», подобрать нужный прокат, подсчитать вес балки для определения стоимости и заказа металла. В тех случаях, когда воспользоваться специальными программами нет возможности, удобными помощниками при расчете металлоконструкций могут стать бесплатные онлайн- и десктоп- программы:

  • калькулятор металлопроката Арсенал;
  • онлайн калькулятор Metalcalc;
  • онлайн-программа sopromat.org для расчета балок и ферм;
  • расчет балок в Sopromatguru онлайн;
  • desktop-программа «Ферма».

1. Калькулятор металлопроката Арсенал

Компания Арсенал предоставляет всем желающим возможность сэкономить свое время, воспользовавшись фирменной десктоп-программой для подсчета теоретического веса металлического профиля любых видов, в том числе - из черной и нержавеющей, а также - из цветного металла. На сайте доступна и онлайн-версия программы .

Для того чтобы выполнить расчет профиля нужно ввести информацию о толщине металла, длине отрезка, высоте и ширине. Можно также выбрать марку прокатного профиля из сортамента и задать требуемую длину. В этом случае программа определит его габаритные размеры и вес автоматически.

2. Онлайн-калькулятор металлопроката Metalcalc

Онлайн-калькулятор Metalcalc - удобный ресурс для определения веса и длины металлопроката. При задании основных технические параметров изделия (номер сортамента или габаритные размеры профиля, его длина) программа определит его вес. Расчеты выполняются на основании действующих ГОСТов и отличаются максимальной точностью.

Программа имеет также и функцию обратного пересчета. Если указать массу и типоразмер профиля - сервис высчитает его длину. Ресурс абсолютно бесплатен и удобен в использовании.

3. Бесплатная онлайн-программа sopromat.org для расчета балок и ферм

На сайте Sopromat.org представлена бесплатная онлайн-программа для расчета балок и ферм методом конечных элементов. Расчет может быть выполнен, в том числе, для статически неопределимых рам.

Сервис может быть полезен как студентам для выполнения курсовых работ, так и практикующим инженерам для определения параметров реальных металлоконструкций. Онлайн-ресурс позволяет:

  • определить перемещения в узлах;
  • рассчитать реакции опор;
  • построить эпюры Q, M, N
  • сохранить результаты расчетов и схему нагрузок;
  • экспортировать результаты в формат чертежа DXF.

На сайте всегда находится самая свежая версия программы. Имеется версия Mini для скачивания и работы на мобильных устройствах. Мобильная программа обладает всеми преимуществами полноценной версии.

4. Расчет балок в Sopromatguru

В ближайшее время авторы планируют добавить в программу функцию расчета ферм. На сегодняшний день онлайн-ресурс позволяет бесплатно задать параметры балки, опоры, нагрузки и получить эпюру. За получение доступа к подробному расчету авторы программы просят перечислить символическую оплату. Стоит отметить, что онлайн-сервис красиво оформлен и оборудован понятным интерфейсом.

5. Бесплатная desktop-программа «Ферма»

Небольшая программа Ферма позволяет рассчитать плоскую статически определимую ферму и сохранить результаты. Для начала работы необходимо задать геометрические параметры фермы (размеры стержней, высоты, положения раскосов, нагрузки).

Расчет выполняется по методу вырезания узлов. Определяются усилия в стержнях фермы, а также реакции опор. Максимальное число панелей фермы - 16, число нагрузок - не более 20. Программный комплекс может также применяться и для расчета статически неопределимых ферм.

Фермами называют плоские и пространственные стержневые конструкции с шарнирными соединениями элементов, загружаемые исключительно в узлах. Шарнир допускает вращение, поэтому считается, что стержни под нагрузкой работают только на центральное растяжение-сжатие. Фермы позволяют значительно сэкономить материал при перекрытии больших пролётов.

Рисунок 1

Фермы классифицируются:

  • по очертанию внешнего контура;
  • по виду решётки;
  • по способу опирания;
  • по назначению;
  • по уровню проезда транспорта.

Также выделяют простейшие и сложные фермы . Простейшими называют фермы, образованные последовательным присоединением шарнирного треугольника. Такие конструкции отличаются геометрической неизменяемостью, статической определимостью. Фермы со сложной структурой, как правило, статически неопределимы.

Для успешного расчёта необходимо знать виды связей и уметь определять реакции опор. Эти задачи подробно рассматриваются в курсе теоретической механики. Разницу между нагрузкой и внутренним усилием, а также первичные навыки определения последних дают в курсе сопротивления материалов.

Рассмотрим основные методы расчёта статически определимых плоских ферм.

Способ проекций

На рис. 2 симметричная шарнирно-опёртая раскосная ферма пролётом L = 30 м, состоящая из шести панелей 5 на 5 метров. К верхнему поясу приложены единичные нагрузки P = 10 кН. Определим продольные усилия в стержнях фермы. Собственным весом элементов пренебрегаем.

Рисунок 2

Опорные реакции определяются путём приведения фермы к балке на двух шарнирных опорах. Величина реакций составит R (A) = R (B) = ∑P/2 = 25 кН. Строим балочную эпюру моментов, а на её основе - балочную эпюру поперечных усилий (она понадобится для проверки). За положительное направление принимаем то, что будет закручивать среднюю линию балки по часовой стрелке.

Рисунок 3

Метод вырезания узла

Метод вырезания узла заключается в отсечении отдельно взятого узла конструкции с обязательной заменой разрезаемых стержней внутренними усилиями с последующим составлением уравнений равновесия. Суммы проекций сил на оси координат должны равняться нулю . Прикладываемые усилия изначально предполагаются растягивающими, то есть направленными от узла. Истинное направление внутренних усилий определится в ходе расчёта и обозначится его знаком.

Рационально начинать с узла, в котором сходится не более двух стержней. Составим уравнения равновесия для опоры, А (рис. 4).

F (y) = 0: R (A) + N (A-1) = 0

F (x) = 0: N (A-8) = 0

Очевидно, что N (A-1) = -25кН. Знак «минус» означает сжатие, усилие направлено в узел (мы отразим это на финальной эпюре).

Условие равновесия для узла 1:

F (y) = 0: -N (A-1) - N (1−8) ∙cos45° = 0

F (x) = 0: N (1−2) + N (1−8) ∙sin45° = 0

Из первого выражения получаем N (1−8) = -N (A-1) /cos45° = 25кН/0,707 = 35,4 кН. Значение положительное, раскос испытывает растяжение. N (1−2) = -25 кН, верхний пояс сжимается. По этому принципу можно рассчитать всю конструкцию (рис. 4).

Рисунок 4

Метод сечений

Ферму мысленно разделяют сечением, проходящим как минимум по трём стержням, два из которых параллельны друг другу. Затем рассматривают равновесие одной из частей конструкции . Сечение подбирают таким образом, чтобы сумма проекций сил содержала одну неизвестную величину.

Проведём сечение I-I (рис. 5) и отбросим правую часть. Заменим стержни растягивающими усилиями. Просуммируем силы по осям:

F(y) = 0: R(A) - P + N(9−3)

N(9−3) = P - R(A) = 10 кН - 25 кН = -15 кН

Стойка 9−3 сжимается.

Рисунок 5

Способ проекций удобно применять в расчётах ферм с параллельными поясами, загруженными вертикальной нагрузкой. В этом случае не придётся вычислять углы наклона усилий к ортогональным осям координат. Последовательно вырезая узлы и проводя сечения, мы получим значения усилий во всех частях конструкции. Недостатком способа проекций является то, что ошибочный результат на ранних этапах расчёта повлечёт за собой ошибки во всех дальнейших вычислениях.

Требует составлять уравнение моментов относительно точки пересечения двух неизвестных сил. Как и в методе сечений, три стержня (один из которых не пересекается с остальными) разрезаются и заменяются растягивающими усилиями.

Рассмотрим сечение II-II (рис. 5). Стержни 3−4 и 3−10 пересекаются в узле 3, стержни 3−10 и 9−10 пересекаются в узле 10 (точка K). Составим уравнения моментов. Суммы моментов относительно точек пересечения будут равняться нулю. Положительным принимаем момент, вращающий конструкцию по часовой стрелке.

m(3) = 0: 2d∙R(A) - d∙P - h∙N(9−10) = 0

m(K) = 0: 3d∙R(A) - 2d∙P - d∙P + h∙N(3−4) = 0

Из уравнений выражаем неизвестные:

N(9−10) = (2d∙R(A) - d∙P)/h = (2∙5м∙25кН - 5м∙10кН)/5м = 40 кН (растяжение)

N(3−4) = (-3d∙R(A) + 2d∙P + d∙P)/h = (-3∙5м∙25кН + 2∙5м∙10кН + 5м∙10кН)/5м = -45 кН (сжатие)

Способ моментной точки позволяет определить внутренние усилия независимо друг от друга, поэтому влияние одного ошибочного результата на качество последующих вычислений исключено. Данным способом можно воспользоваться в расчёте некоторых сложных статически определимых ферм (рис. 6).

Рисунок 6

Требуется определить усилие в верхнем поясе 7−9. Известны размеры d и h, нагрузка P. Реакции опор R(A) = R(B) = 4,5P. Проведём сечение I-I и просуммируем моменты относительно точки 10. Усилия от раскосов и нижнего пояса не попадут в уравнение равновесия , так как сходятся в точке 10. Так мы избавляемся от пяти из шести неизвестных:

m(10) = 0: 4d∙R(A) - d∙P∙(4+3+2+1) + h∙O(7−9) = 0

O(7−9) = -8d∙P/h

Нулевым называют стержень, в котором усилие равно нулю. Выделяют ряд частных случаев, в которых гарантированно встречается нулевой стержень.

  • Равновесие ненагруженного узла, состоящего из двух стержней, возможно только в том случае, если оба стержня нулевые.
  • В ненагруженном узле из трёх стержней одиночный (не лежащий на одной прямой с остальными двумя) стержень будет нулевым.

Рисунок 7

  • В трехстержневом узле без нагрузки усилие в одиночном стержне будет равно по модулю и обратно по направлению приложенной нагрузке. При этом усилия в стержнях, лежащих на одной прямой, будут равны друг другу, и определятся расчётом N(3) = -P, N(1) = N(2) .
  • Трехстержневой узел с одиночным стержнем и нагрузкой , приложенной в произвольном направлении. Нагрузка P раскладывается на составляющие P" и P" по правилу треугольника параллельно осям элементов. Тогда N(1) = N(2) + P", N(3) = -P".

Рисунок 8​

  • В ненагруженном узле из четырёх стержней, оси которых направлены по двум прямым, усилия будут попарно равны N(1) = N(2) , N(3) = N(4) .

Пользуясь методом вырезания узлов и зная правила нулевого стержня, можно проводить проверку расчётов, проведённых другими методами.

Расчёт ферм на персональном компьютере

Современные вычислительные комплексы основаны на методе конечного элемента. С их помощью осуществляют расчёты ферм любого очертания и геометрической сложности . Профессиональные программные пакеты Stark ES, SCAD Office, ПК Лира обладают широким функционалом и, к сожалению, высокой стоимостью, а также требуют глубокого понимания теории упругости и строительной механики. Для учебных целей и подойдут бесплатные аналоги, например Полюс 2.1.1.

В Полюсе можно рассчитывать плоские статически определимые и неопределимые стержневые конструкции (балки, фермы, рамы) на силовое воздействие, определять перемещения и температурное воздействие. Перед нами эпюра продольных усилий для фермы, изображённой на рис. 2. Ординаты графика совпадают с полученными вручную результатами.

Рисунок 9

Порядок работы в программе Полюс

  • На панели инструментов (слева) выбираем элемент «опора». Размещаем помещаем элементы на свободное поле кликом левой кнопки мыши. Чтобы указать точные координаты опор, переходим в режим редактирования, нажав на значок курсора на панели инструментов.
  • Двойной клик по опоре. Во всплывающем окне «свойства узла» задаём точные координаты в метрах. Положительное направление осей координат - вправо и вверх соответственно. Если узел не будет использоваться в качестве опоры, установите флажок «не связан с землёй». Здесь же можно задать приходящие в опору нагрузки в виде точечной силы или момента, а также перемещения. Правило знаков такое же. Удобно разместить крайнюю левую опору в начале координат (точка 0, 0).
  • Далее размещаем узлы фермы. Выбираем элемент «свободный узел», кликаем по свободному полю, точные координаты прописываем для каждого узла в отдельности.
  • На панели инструментов выбираем «стержень ». Кликаем на начальном узле, отпускаем кнопку мышки. Затем кликаем на конечном узле. По умолчанию стержень имеет шарниры на двух концах и единичную жёсткость. Переходим в режим редактирования, двойным кликом по стержню открываем всплывающее окно, при необходимости изменяем граничные условия стержня (жёсткая связь, шарнир, подвижный шарнир для опорного конца) и его характеристики.
  • Для загружения ферм используем инструмент «сила», нагрузка прикладывается в узлах. Для сил, прикладываемых не строго вертикально или горизонтально, устанавливаем параметр «под углом», после чего вводим угол наклона к горизонтали. Альтернативно можно сразу ввести значение проекций силы на ортогональные оси.
  • Программа считает результат автоматически. На панели задач (вверху) можно переключать режимы отображения внутренних усилий (M, Q, N), а также опорных реакций (R). Результатом будет эпюра внутренних усилий в заданной конструкции.

В качестве примера рассчитаем сложную раскосную ферму, рассмотренную в методе моментной точки (рис. 6). Примем размеры и нагрузки: d = 3м, h = 6м, P = 100Н. По выведенной ранее формуле значение усилия в верхнем поясе фермы будет равно:

O(7−9) = -8d∙P/h = -8∙3м∙100Н/6м = -400 Н (сжатие)

Эпюра продольных усилий, полученная в Полюсе:

Рисунок 10

Значения совпадают, конструкция смоделирована верно .

Список литературы

  1. Дарков А. В., Шапошников Н. Н. - Строительная механика: учебник для строительных специализированных вузов - М.: Высшая школа, 1986.
  2. Рабинович И. М. - Основы строительной механики стержневых систем - М.: 1960.

Навес является простой архитектурной конструкцией, которая применяется в самых различных целях. В большинстве случаев его изготавливают при отсутствии гаража с накрытием на даче или для того, чтобы защитить площадку для отдыха от сильных лучей солнца. Для обеспечения надежности и прочности подобной постройки небольших размеров понадобится произвести расчет навеса. В конечном итоге можно будет получить данные, которые смогут показать, какие фермы будут использоваться и как их нужно будет варить.

Схему закрепления профильных труб можно увидеть на рис. 1.

На рисунке 1 изображена схема закрепления труб

Как рассчитать фермы для навеса своими руками?

Для того чтобы произвести расчет подобной конструкции для навеса, понадобится подготовить:

  • Калькулятор и специальное программное обеспечение;
  • СНиП 2.01.07-85 и СНиП П-23-81.

При проведении расчетов надо будет выполнить следующие действия:

  1. Прежде всего понадобится выбрать схему фермы. Для этого определяются будущие контуры. Очертания нужно выбирать исходя из основных функций навеса, материала и других параметров;
  2. После этого надо будет определить габариты изготавливаемой конструкции. Высота будет зависеть от типа кровли и используемого материала, веса и других параметров;
  3. Если размеры пролета превышают 36 м, понадобится произвести расчет для строительного подъема. В данном случае имеется ввиду обратный погашаемый изгиб от нагрузок на ферму;
  4. Необходимо определить размеры панелей сооружения, которые должны соответствовать расстояниям между отдельными элементами, которые обеспечивают передачу нагрузок;
  5. На следующем этапе определяется расстояние между узлами, которое чаще всего равняется ширине панели.

При произведении расчетов следуйте таким советам:

  1. Понадобится все значения высчитать в точности. Следует знать, что даже малейший недочет приведет к ошибкам в процессе произведения всех работ по изготовлению конструкции. Если нет уверенности в собственных силах, то рекомендуется сразу же обратиться к профессионалам, которые имеют опыт в проведении подобных расчетов;
  2. Для облегчения работы можно использовать готовые проекты, в которые останется лишь подставить имеющиеся значения.

На этом фото изображено металлическое укрытие

В процессе выполнения расчета фермы следует помнить, что в случае ее увеличивающейся высоты будет увеличиваться и несущая способность. В зимнее время года снег на подобном навесе практически не будет накапливаться. Для того чтобы увеличить прочность конструкции, следует установить несколько прочных ребер жесткости.

Для сооружения фермы лучше всего использовать трубу из железа, которая имеет небольшой вес, высокую прочность и жесткость. В процессе определения размеров для подобного элемента понадобится учитывать следующие данные:

  1. Для конструкций небольших размеров, ширина которых составляет до 4,5 м, понадобится использовать трубу из металла 40х20х2 мм;
  2. Для конструкций, ширина которых составляет менее 5,5 м, нужно использовать трубу с размерами 40х40х2 мм;
  3. Если ширина фермы составит более 5,5 м, лучше всего применить трубу 60х30х2 мм или 40х40х3 мм.

В процессе планирования шага ферм следует учитывать, что максимально возможное расстояние между трубами навеса составляет 1,7 м. Только в таком случае можно будет сберечь надежность и прочность конструкции.

Пример расчета ферм для навеса

  1. В качестве примера будет рассмотрен навес шириной 9 м уклоном в 8°. Пролет сооружения составляет 4,7 м. Нагрузки снега для региона находятся на уровне 84 кг/м²;
  2. Вес фермы составляет приблизительно 150 кг (следует взять маленький запас на прочность). Вертикальная нагрузка составляет 1,1 т на стойку с высотой 2,2 м;
  3. Одним концом ферма будет опираться на стенку постройки из кирпича, а вторым - на колонну для опоры навеса с помощью анкерных болтов. Для изготовления фермы используется квадратная труба 45х4 мм. Следует заметить, что с подобным приспособлением достаточно удобно работать;
  4. Лучше всего изготавливать фермы с параллельными поясами. Высота каждого из элементов составляет 40 см. Для раскосов используется труба сечением 25х3 мм. Для нижнего и верхнего пояса применяется труба 35х4 мм. Козырьки и другие элементы нужно будет сварить друг с другом, потому толщина стенки будет 4 мм.

В конечном итоге можно будет получить следующие данные:

  • Расчетное сопротивление для стали: Ry = 2,45 T/см²;
  • Коэффициент надежности - 1;
  • Пролет для фермы - 4,7 м;
  • Высота фермы - 0,4 м;
  • Число панелей для верхнего пояса конструкции - 7;
  • Углы нужно будет варить через один.

Все нужные данные для расчетов можно будет найти в специальных справочниках. Однако профессионалы рекомендуют производить расчеты подобного типа с помощью использования программного обеспечения. Если будет допущена ошибка, то изготавливаемые фермы сложатся под воздействием нагрузок снега и ветра.

Как рассчитать ферму для навеса из поликарбоната?

Навес является сложной конструкцией, поэтому перед приобретением определенного количества материала понадобится смета. Каркас для опоры должен иметь возможность выдерживать любые нагрузки.

Для того чтобы произвести профессиональный расчет конструкции из поликарбоната, рекомендуется обратиться за помощью к инженеру с опытом подобной работы. Если навес являет собой отдельную конструкцию, а не пристройку к частному дому, то расчеты усложнятся.

Уличная кровля состоит из столбиков, лаг, ферм и покрытия. Именно эти элементы и нужно будет рассчитывать.

Если планируется изготовить навес из поликарбоната арочного типа, то не получится обойтись без использования ферм. Фермы являются приспособлениями, которые связывают лаги и опорные столбики. От подобных элементов будут зависеть размеры навеса.

Навесы из поликарбоната, в качестве основы которых применяются металлические фермы, изготавливать достаточно сложно. Правильный каркас сможет распределять нагрузку по опорным столбикам и лагам, при этом конструкция навеса не будет разрушаться.

Для монтажа поликарбоната лучше всего использовать профильные трубы. Основной расчет фермы - учет материала и уклона. К примеру, для односкатной навесной конструкции с маленьким уклоном применяется неправильная форма фермы. Если конструкция имеет маленький угол, то можно использовать металлические фермы в форме трапеции. Чем больше радиус структуры арки, тем меньше существует возможностей задержки снега на кровле. В данном случае несущая способность фермы будет большой (рис. 2).


На рисунке 2 изображен будущий навес покрытый поликарбонатом

Если используется простая ферма домиком размерами 6х8 м, то расчеты будут такими:

  • Шаг между столбиками для опоры - 3 м;
  • Количество металлических столбиков - 8 шт;
  • Высота ферм под стропами - 0,6 м;
  • Для устройства обрешетки крыши понадобится 12 профильных труб с размерами 40х20х0,2 см.

В некоторых случаях можно сэкономить путем уменьшения количества материала. К примеру, вместо 8-ми стоек можно установить 6. Можно также сократить обрешетку каркаса. Однако не рекомендуется допускать потерю жесткости, так как это может привести к разрушению сооружения.

Подробный расчет фермы и дуги для навеса

В данном случае будет производиться расчет навеса, фермы которого устанавливаются с шагом 1 м. Нагрузка на подобные элементы от обрешетки передается исключительно в узлах фермы. В качестве материала для кровли используется профнастил. Высота фермы и дуги может быть любой. Если это навес, который примыкает к основной постройке, то главным ограничителем является форма кровли. В большинстве случаев сделать высоты фермы больше 1 м не получится. С учетом того, что понадобится делать ригеля между колоннами, максимальная высота составит 0,8 м.

Схему навеса по фермам можно увидеть на рис. 3. Голубым цветом обозначаются балки обрешетки, синим цветом - ферма, которую нужно будет рассчитывать. Фиолетовым цветом обозначаются балки или фермы, на которые будут опираться колонны.

В данном случае будет использоваться 6 ферм треугольной формы. На крайние элементы нагрузка будет в несколько раз меньше, чем на остальные. В данном случае металлические фермы будут консольными, то есть их опоры располагаются не на концах ферм, а в узлах, которые изображены на рис. 3. Такая схема позволяет равномерно распределять нагрузки.


На рисунке 3 изображена схема укрытия по фермам

Расчетная нагрузка составляет Q = 190 кг, при этом снеговая нагрузка равна 180 кг/м². Благодаря сечениям возможно произвести расчет усилий во всех стержнях конструкции, при этом нужно учитывать тот факт, что ферма и нагрузка на данный элемент является симметричной. Следовательно, понадобится рассчитывать не все фермы и дуги, а лишь некоторые из них. Для того чтобы свободно ориентироваться в большом количестве стержней в процессе расчета, стержни и узлы промаркированы.

Формулы, которые понадобится использовать при расчете

Понадобится определить усилия в нескольких стержнях фермы. Для этого следует использовать уравнение статического равновесия. В узлах элементов шарниры, потому значение моментов изгиба в узлах фермы равно 0. Сумма всех сил по отношению к оси x и y тоже равна 0.

Понадобится составить уравнение моментов по отношению к точке 3 (д):

М3 = -Ql/2 + N2-a*h = 0, где l - расстояние от точки 3 до точки приложения силы Q/2, которое составляет 1,5 м, а h - плечо действия силы N2-a.

Ферма имеет расчетную высоту 0,8 м и длину 10 м. В таком случае тангенс угла a составит tga = 0,8/5 = 0,16. Значение угла a = arctga = 9,09°. В конечном итоге h = lsina. Из этого следует уравнение:

N2-a = Ql/(2lsina) = 190/(2*0,158) = 601,32 кг.

Таким же образом можно определить значение N1-a. Для этого понадобится составить уравнение моментов по отношению к точке 2:

М2 = -Ql/2 + N1-a*h = 0;

N1-a = Q/(2tga) = 190/(2*0,16) = 593,77 кг.

Проверить правильность вычислений можно путем составления уравнения сил:

EQy = Q/2 - N2-asina = 0; Q/2 = 95 = 601,32 * 0,158 = 95 кг;

EQx = N2-acosa - N1-a = 0; N1-a = 593,77 = 601,32 * 0,987 = 593,77 кг.

Условия статистического равновесия выполнены. Любое из уравнений сил, которые использовались в процессе проверки, можно использовать для того, чтобы определить усилия в стержнях. Дальнейший расчет ферм производится таким же образом, уравнения не изменятся.

Стоит знать, что расчетную схему можно составить, так чтобы все продольные силы направлялись от поперечных сечений. В таком случае знак «-» перед показателем силы, который получен при расчетах, покажет, что подобный стержень будет работать на сжатие.

Для того чтобы определить усилие в стержне з-и, понадобится первым делом определить значение угла у: h = 3siny = 2,544 м.

Ферма для навеса своими руками рассчитывается несложно. Понадобится лишь знать основные формулы и уметь их использовать.

2.6.1. Общие понятия.

Плоская стержневая система, которая после включений шарниров во все узлы остается геометрически неизменяемой называется фермой.

Примеры ферм показаны на рис.2.37..

В реальных стержневых конструкциях, которые подходят под определение “ферма”, стержни в узлах соединены не шарнирами, а балками, заклепками, сваркой или замоналичены (в железобетонных конструкциях). Тем не менее, в расчетных схемах таких конструкций могут вводится в узлы шарниры, но при условии, что

· стержни являются идеально прямыми;

· оси стержней пересекаются в центре узла;

· сосредоточенные силы приложены только к узлам;

· размеры поперечных сечений стержней значительно меньше их длины.

Рис.2.37.. Статически определимые плоские фермы.

При этих условиях стержни фермы работают только на растяжение или сжатие, в них возникают только продольные силы .

Это обстоятельство существенно упрощает расчет стержневой системы и позволяет получать результаты с достаточной степенью точности.

Для определения усилий в стержнях фермы методом сечений необходимо:

1) Сечение проводить таким образом, чтобы оно

· пересекало ось стержня, в котором определяется усилие;

· пересекало по возможности не более трех стержней;

· разделяло ферму на две части.

2) Продольные усилия в стержнях направлять в положительном направлении, т.е. от узла.

3) Выбирать такие уравнения равновесия для части фермы, которые включали бы лишь одно искомое усилие. Такими уравнениями являются, например,

· сумма моментов относительно точки, в которой пересекаются лини действия усилий в стержнях ферм, разрезанных сечением; такие точки принято называть моментными ;

· сумма проекций сил на вертикальную ось для раскосов ферм с параллельными поясами.

4) Для определения усилий в стойках вырезать узлы, если в них сходится не более трех стержней.

5) Для упрощения определения плеч внутренних усилий относительно моментной точки при составлении уравнений моментов при необходимости заменять искомые усилия их проекциями на взаимно перпендикулярные оси.

2.6.2. Определение усилий в стержнях фермы.

Для определения усилий в стержнях фермы необходимо:

· определить реакции опор;

· методом сечений определить требуемые усилия;

· произвести проверку полученных результатов.

Реакции опор в простых балочных фермах, показанных на рис.2.37, определяются также как в однопролетных балках с помощью уравнений вида

Для проверки реакций опор используем уравнение

Рассмотрим алгоритм расчета на конкретном примере.

Дана расчетная схема фермы (рис.2.38).

Требуется определить усилия в стержнях 4-6, 3-6, 3-5, 3-4, 7-8.



Решение задачи.

1) Определяем реакции опор .

Для этого используем уравнение равновесия:

Записываем уравнения, используя принятое правило знаков:

Решая уравнения, находим

Проверяем реакции опор по уравнению .

2) Определяем усилия в стержнях фермы .

а) Усилия в стержнях 4-6, 3-6, 3-5.

Для определения усилий в указанных стержнях разрезаем ферму сечением а-а на две части и рассматриваем равновесие левой части фермы (рис.2.39.

К левой части фермы прикладываем реакцию опоры , силу , действующую в узле 4, и искомые усилия в стержнях фермы , , . Эти усилия направляем вдоль соответствующих стержней в сторону от узла, то есть в положительном направлении.

Для определения усилий , , можно использовать следующую систему уравнений:

Но в этом случае получим совместную систему уравнений, в которые будут входить все искомые усилия.

Для упрощения решения задачи необходимо использовать уравнения равновесия, в которые входило бы только одно неизвестное.

Для определения усилия таким уравнением является

т. е. сумма моментов относительно узла 3, в котором пересекаются линии действия усилий и , так как моменты этих сил относительно узла 3 равны нулю. Для усилия таким уравнением является

т. е. сумма моментов относительно узла 6, в котором пересекаются линии действия усилий и .

Для определения усилия следует использовать уравнение суммы моментов относительно точки О, в которой пересекаются линии действия усилий и , т. е.

При записи указанных уравнений возникают математические трудности по определению плеч сил относительно соответствующих точек. Для упрощения решения этой задачи рекомендуется разложить искомое усилие по осям Х, Y и использовать проекции усилия при записи уравнения равновесия.

Покажем это на примере усилия (рис.2.40).

Запишем уравнение :

Решая уравнение, получаем:

В данном примере проекция усилия на ось Х имеет момент относительно точки О равный нулю, так как линия её действия проходит через точку О.

3) Определяем усилие в стержне 3-4.

Для определения усилия вырезаем в узел 4 фермы сечением b-b (рис.2.41.а).

4) Определяем усилие в стержне 7-8.

Вырезаем узел 8 сечение с-с (рис.2.41.б). Составляем два уравнения равновесия

Для определения усилия имеем два уравнения с тремя неизвестными. Следовательно, одно из этих неизвестных ( или ) должно быть определено предварительно.

Если усилие известно, то для определения усилия можно использовать уравнение:

сумма проекций сил, приложенных в узле, на ось x, перпендикулярную линии действия силы .

Необходимо отметить, что усилия в стержнях фермы можно определять, рассматривая поочередно равновесие её узлов и составляя для каждого узла по два уравнения

Начинать необходимо с узла, в котором сходятся только два стержня, а затем последовательно рассматривать узлы, в которых только два неизвестных усилия. Рассмотрим пример (рис.2.42).

1) Рассматриваем узел 1, в котором сходятся только два стержня. Составляем и решаем уравнения

2) Рассматриваем узел 2, в котором сходятся 3 стержня, но известно усилие :

Решая систему уравнений, находим:

Затем рассматривается узел 4 и т. д.

Такой способ определения усилий в стержнях фермы имеет следующие недостатки:

· ошибка, допущенная в процессе расчета, распространяется на последующие вычисления;

· он не рационален для определения усилий лишь в отдельных стержнях фермы.

К достоинствам способа относится возможность применения при составлении программ для расчета на ЭВМ.

2.6.3. Проверка результатов расчета.

Для проверки результатов расчета нужно использовать уравнения равновесия, которые включают наибольшее число усилий. Так, например, для проверки усилий , , (рис.3.3) такими уравнениями являются

Расчет ферм – это программа, используемая для расчета плоских ферм.

Использование

Благодаря данному программномую обеспечению, Вы сможете определить для конструкций выбранного типа (поддерживаются даже деревянные) фермы нагрузку, а также оценить уровень их прочности и устойчивости. Это поможет выявить все недостатки и ошибки, которые порою "проскакивают" незамеченными на этапе проектировки.

Функционал

Данное решение является усовершенствованной версией программы , о которой мы рассказывали в другом обзоре. Именно из Кристалла и позаимствован режим расчета ферм. Однако, конечно, "ферма" имеет намного более развитый, усовершенствованный, функционал, чем ее предшественник. Например, разработчик задействовал в своем продукте те прототипы, которые являются наиболее часто встречающимися в этой сфере деятельности. Помимо этого, в каталог поперечных стержней сечений добавлено гораздо больше вариантов, чем было в Кристалле. Также окно выбора стали стало более удобным для пользователя.

Работа с программой Расчет ферм происходит в автоматическом режиме. Пользователю не придется самостоятельно генерировать модель фермы, так как расчет будет производиться соответственно готовому шаблону, выбранному из каталога. Построение расчетной схемы усилий и геометрической схемы происходит в AutoCad, что гораздо более удобно для специалиста, нежели обыкновенный отчет в текстовом редакторе. Помимо создания фермы в этой программе, Вы также можете импортировать сюда проекты, созданные в другом программном обеспечении (формата DFX).

Ключевые особенности

  • расчет плоских ферм любых конструкций из выбранного материала;
  • использование готовых прототипов, что исключает необходимость "рисовать" ферму самому;
  • полный расчет формул с детальными описания ми и с указанием ссылок на СНиПы;
  • поддержка компьютеров с любыми версиями Windows;
  • простой и понятный интерфейс (полностью на русском языке);
  • совместимость со всеми установленными стандартами;
  • распространение на бесплатной основе.