Принцип работы воздушного винта. Аэродинамические характеристики воздушных винтов. Зависимость кпд от высоты и скорости полета

Пограничным слоем называется тонкий слой заторможенного газа, образующийся на поверхности тел, обтекаемых потоком. Вязкость газа в пограничном слое является основной причиной образования силы лобового сопротивления.

При обтекании какого-либо тела частицы газа, проходящие очень близко от его поверхности, будут испытывать сильное торможение. Начиная от некоторой точки вблизи поверхности скорость потока при приближении к телу уменьшается и на самой поверхности становится равной нулю. Распределение скоростей в других сечениях поверхности аналогично (Рисунок2.1).

Расстояние R , на котором происходит уменьшение скорости, называется толщиной пограничного слоя, а изменение скорости по толщине пограничного слоя – градиентом скорости.

Рисунок2.1 Изменение скорости течения воздуха в пограничном слое

Толщина пограничного слоя измеряется в миллиметрах и зависит от вязкости и давления воздуха, от формы тела, состояния его поверхности и положения тела в воздушном потоке. Толщина пограничного слоя постепенно увеличивается от передней части тела, к задней.

На границе пограничного слоя скорость частиц становится равной скорости набегающего потока. Выше этой границы градиента скорости нет, поэтому вязкость газа практически не проявляется.

Таким образом, в пограничном слое скорости частиц изменяются от скорости внешнего потока на “границе” пограничного слоя до нуля на поверхности тела.

Из-за градиента скорости характер движения частиц газа в пограничном слое отличается от их движения в потенциальном слое. В пограничном слое вследствие разности скоростей U 1 - U 2 частицы приходят во вращательное движение (см. Рисунок2.2).

Вращение тем интенсивнее, чем ближе к поверхности тела находится частица. Пограничный слой всегда завихрен и поэтому его называют слоем поверхностного завихрения.

Рисунок 2.2 Обтекание тела воздушным потоком - торможение потока в пограничном слое

Частицы газа из пограничного слоя уносятся потоком в область, распложенную позади обтекаемого тела, называемую спутной струей. Скорости частиц в спутной струе всегда меньше скорости внешнего потока, т.к. частицы попадают из пограничного слоя уже приторможенными.

Виды течения пограничного слоя . При небольшой скорости набегающего потока газ в пограничном слое течет спокойно в виде отдельных слоев. Такой пограничный слой называется ламинарным (Рисунок2.3,а). Пограничный слой завихрен, но движение газа упорядочено, слои не смешиваются, частицы вращаются в пределах одного и того же тонкого слоя.

Если в пограничном слое происходит энергичное перемешивание частиц в поперечном направлении и весь пограничный слой беспорядочно завихрен, такой пограничный слой называется турбулентным (Рисунок2,б).

В турбулентном пограничном слое наблюдается непрерывное перемещение струек воздуха во всех направлениях, что требует большего количества энергии. Сопротивление воздушного потока увеличивается.

а) б)


с)

Рисунок 2.3 Ламинарное и турбулентное течение

У передней части обтекаемого тела образуется ламинарный пограничный слой, которой затем переходит в турбулентный. Такой пограничный слой называется смешанным (Рисунок2.3,с).

При смешанном течении в определенной точке происходит переход пограничного слоя из ламинарного в турбулентный. Расположение ее на поверхности тела зависит от скорости струек, формы тела и его положения в воздушном потоке, а также от шероховатости поверхности. Положение точки определяется координатой Х с (Рисунок2.3,) .

У гладких крыльевых профилей точка перехода обычно лежит на расстоянии, примерно равном 35% от длины хорды.

При создании профилей крыльев конструкторы стремятся отнести эту точку как можно дальше от передней кромки,увеличивая тем самым протяженность ламинарной части пограничного слоя Для этой цели применяют специальные ламиниризированные профили, а также увеличивают гладкость поверхности крыла и ряд других мероприятий.

Отрыв пограничного слоя . При обтекании тела с криволинейной поверхностью давление и скорости в разных точках поверхности будут неодинаковыми (Рисунок 2.4).При движении потока от точки А к точке Б происходит диффузорное расширение потока.

А Б

Рисунок 2.4 Течение в пограничном слое вблизи точки отрыва

Поэтому давление растет а скорость уменьшается, так как у самой поверхности тела скорости частиц очень малы, под влиянием разности давлений между точками А и В на этом участке происходит движение газа в обратном направлении. При этом внешний поток продолжает двигаться вперед.

Из-за обратного течения газа внешний поток оттесняется от поверхности тела. Пограничный слой набухает и отрывается от поверхности тела. Точка на поверхности тела, в которой происходит отрыв пограничного слоя, называется точкой отрыва .

Отрыв пограничного слоя приводит к образованию вихрей за телом. Положение точки отрыва зависит от характера течения в пограничном слое. При турбулентном течении место отрыва потока лежит значительно дальше по потоку, чем при ламинарном. Вихревая область за телом в этом случае значительно меньше. Это парадоксальное явление объясняется тем, что при турбулентном движении происходит более интенсивное поперечное перемешивание частиц.

Отрыв пограничного слоя наблюдается при обтекании криволинейных поверхностей, например профиля крыла на больших углах атаки. Явление это очень опасно, т.к. приводит к резкому уменьшению подъемной силы, значительному возрастанию сопротивления движению потока, потере устойчивости и управляемости самолета, вибрациям.

Явление срыва потока зависит от формы и состояния поверхности тела, характера течения воздуха в пограничном слое. Тела, имеющие вытянутую форму с плавными очертаниями (удобообтекаемые), не подвержены срыву потока в отличие от неудобообтекаемых тел.

Срыв потока может возникнуть в результате нарушения правил эксплуатации самолета: выхода на критические углы атаки, нарушения центровки. При небрежном техническом обслуживании из-за неплотного прилегания крышек лючков, неполного закрытия створок и других причин возникают местные срывы потока. Возникают опасные вибрации частей самолета.

Это отдельная самостоятельная единица, а точнее целый лопастной агрегат. Он является движителем для аппарата, на котором установлен, то есть превращает мощность двигателя в тягу и, в конечном счете, в движение.

Человек уже давно проявлял внимание к винту. Первые теоретические свидетельства этого имеются еще в рукописях и рисунках Леонардо да Винчи. А практически его впервые применил (для метеорологических приборов) М. В. Ломоносов. вначале устанавливался на дирижаблях, в последствии и по сегодняшнее время на самолетах и при использовании и двигателей. Применяется он также и на наземных аппаратах. Это так называемые суда на воздушной подушке, а также аэросани и глиссеры. То есть история его (как и история всей авиации:-)) длинна и увлекательна и еще, похоже, далеко не закончена.

Что касается теории и принципа действия… Хотел начать рисовать векторные диаграммы, а потом передумал:-). Во-первых не тот сайт, а, во-вторых, все это я уже описал , и даже :-). Скажу лишь, что лопасти воздушного винта имеют аэродинамический профиль, и при его вращении в воздушной среде возникает та же картина, как и при движении крыла.

Аэродинамическая сила (картинка из предыдущей статьи:-))

Все те же , тот же скос потока, только теперь уже подъемная сила становится тягой винта, заставляющей самолет двигаться вперед.

Есть, конечно, и свои особенности. Ведь (точнее его лопасти) по сравнению с совершает более сложное движение: вращательное плюс поступательное движение вперед. И на самом деле теория воздушного винта достаточно сложна. Однако для принципиального понимания вопроса всего сказанного вполне достаточно. Остановлюсь только на некоторых особенностях.Замечу, кстати, что винты бывают не только тянущие, но и толкающие (такие, между прочим, стояли на самолете братьев Райт).

Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м.

Воздушный винт для траспортного самолета А400М.

Транспортный самолет А400М.

При вращении воздушного винта и одновременном его движении вперед, каждая его точка как бы движется по спирали, а сам винт как бы «ввинчивается в воздух», почти, как винт в гайку или шуруп в дерево. Аналогия очень даже существенная:-). Похоже на резьбу пары «болт –гайка». Каждая резьба имеет такой параметр, как шаг. Чем шаг больше, тем резьба как бы более растянута, и болт в гайку ввинчивается быстрее. Понятие шага существует и для воздушного винта. По сути дела это такое воображаемое расстояние, на которое передвинется вращающийся в воздухе винт при его повороте на один оборот. Для того, чтобы он «ввинчивался» быстрее, нужно, чтобы сила, его тянущая (тяга винта, тот самый аналог подъемной силы), была больше. Или же все, соответственно, наоборот. А этого можно достичь за счет изменения величины аналога угла атаки, который называется углом установки лопасти винта, или попросту шагом винта . Понятие шага винта существует для всех видов воздушных винтов, для самолетов и для вертолетов, и принцип их действия вобщем-то одинаков.

Транспортник Кролевских ВВС Hercules C-4 на стоянке с винтами во флюгерном режиме.

Первые воздушные винты, стоявшие на аэропланах, имели фиксированный шаг. Но дело в том, что любой винт имеет такой параметр, как коэффициент полезного действия, который оценивает эффективность его работы. А она может меняться в зависимости от изменения скорости полета, мощности двигателя, да и лобовое сопротивление винта на это влияет. Вот для того, чтобы сохранить кпд на достаточной высоте была придумана (еще в 30-х года 20 в.) система изменения шага и появились винты изменяемого в полете шага (ВИШ ). Теперь, в зависимости от задаваемого летчиком режима полета, шаг винта может меняться. Кроме того обычно существуют еще два специальных режима. Реверсивный – для создания при торможении самолета на земле и флюгерный , который используется при выключении (чаще аварийном) двигателя в полете. Тогда лопасти выставляются «по потоку», чтобы не создавать лишнего сопротивления полету.

Диаметр винта и его шаг – это основные технические параметры воздушного винта. Существует еще такое понятие, как крутка. То есть каждая лопасть по всей длинне слегка закручена. Это делается опять же для того, чтобы при одной и той же мощности лопасть создавала наибольшую тягу.

Американский экспериментальный самолет Bell X-22 с импеллерами 1966 г.

Французский экспериментальный самолет с импеллерами NORD 500 CADET. 1967 г.

1932 г. Италия. Экспериментальный самолет с импеллером "Летающая бочка"

Современные винты вообще достаточно разнообразны по своей конструкции. Количество лопастей может меняться (в среднем от 2 до 8). может быть как тянущим, так и толкающим. Винт по- другому еще называется пропеллер . Это устаревшее название и происходит от латинского prōpellere, что значить гнать, толкать вперед. Однако сейчас еще одно слово вошло в употребеление. Это слово импеллер . Оно означает «крыльчатка» и обозвали им определенный тип воздушного винта, заключенного в кольцевую оболочку. Это позволяет повысить эффетивность его работы, снизить потери и увеличить безопасность. Однако такого рода летательные аппараты находятся только лишь в стадии экспериментальной разработки.

Основной скоростной диапазон применения винтов ограничен скоростями 700-750 км/ч. Но даже это достаточно большая скорость и для обеспечения устойчивой и эффективной работы во всем диапазоне применяются различные технические ухищрения. В частности разрабатываются многолопастные винты с саблевидными лопастями, ведется работа над сверхзвуковыми винтами, применяются вышеуказанные импеллеры. Кроме того уже достаточно давно применяются так называемые соосные винты, когда на одной оси вращаются два воздушных винта в различных направлениях. Примером самолета с такими винтами может быть самый быстрый самолет с турбовинтовыми двигателями российский стратегический бомбардировщик ТУ-95 . Его скорость (макс.) 920 км/ч.

Стратегический бомбардировщик ТУ-95.

К сожалению, , особенно в сочетании с , имеет все-таки ограниченную область применения. Конечно, там, где так необходимы ближнемагистральные самолеты и так называемая он себя еще покажет. Но тем не менее соревнование высота-скорость-дальность он вместе со своим спутником поршнеым мотором уже проиграл . Но об этом в другой статье…

Фотографии кликабельны.

Надежин Никита

Теория воздушного винта: от первых пропеллеров к эффективным агрегатам будущего.

ПЛАН:

Введение.

1.1. Воздушный винт.

1.2.Технические требования к модели самолёта класса F1B.

3.Описание конструкции воздушного винта.

1.4. Описание модели самолёта.

Заключение.

Список литературы, программное обеспечение.

Приложения.


Введение

Воздушный винт, пропеллер, движитель, в котором радиально расположенные профилированные лопасти, вращаясь, отбрасывают воздух и тем самым создают силу тяги («Пропеллер» - студенческая многотиражка в Московском авиационном институте). Воздушный винт состоит из одной, двух или более лопастей, соединенных друг с другом ступицей. Основная часть винта - лопасти, так как только они создают тягу.

Идею воздушного винта предложил в 1475 году Леонардо да Винчи, и применил его для создания тяги впервые в 1754 году В.М. Ломоносов в модели прибора для метеорологических исследований.

М.В. Ломоносов

На самолете А.Ф. Можайского использовались воздушные винты. Братья Райт использовали толкающий винт.

Ещё до начала проектирования первого самолёта, А.Ф. Можайским были изготовлены несколько моделей самолёта, у которых движителем был воздушный винт, приводимый во вращение резиновым жгутом. В Америке братья Райт также сначала изготавливали модели самолёта, и только потом был спроектирован первый летающий самолёт.

С начала 20 века во всём мире молодые люди начали проектировать и строить модели самолётов и проводить соревнования. В нашей стране первые соревнования напутствовал Н.Е. Жуковский в1926году. Авиамодельный спорт стал культивироваться Международной авиационной федерацией FAI, разработан кодекс FAI, проводятся Всероссийские и международные соревнования.

По правилам соревнований все модели участников должны соответствовать определённым требованиям и, чтобы победить на соревнованиях, надо изготовить модель летающую лучше всех. Для этого необходимо увеличить высоту взлёта модели, но сделать это сложно, так как запас энергии на модели ограничен весом резиномотора, который проверяется во время проведения соревнований. Остается только увеличивать коэффициент использования энергии резины, а это механизация в полёте воздушного винта по изменению геометрических характеристик. Крутящий момент резиномотора переменный и имеет нелинейную характеристику. А крутящий момент необходимый для привода воздушного винта пропорционален диаметру винта в пятой степени. Для реализации имеющегося крутящего момента и увеличения КПД воздушного винта надо в полёте изменять диаметр и шаг. В существующих конструкциях изменяют шаг винта, так как это конструктивно проще, но это влечёт за собой увеличение скорости полёта, а значит и вредного сопротивления крыла. Выигрыш получается небольшой. Увеличение диаметра винта с одновременным увеличением шага позволяет использовать воздушный винт более качественно. Выигрыш получается больше.

Задача : проектирование механизмов, позволяющих увеличить КПД, уменьшить расход топлива для выработки различных видов энергии, приводящих к снижению вредных выбросов в атмосферу.

Тема данной работы очень актуальна для понимания развития современной техники. Работа по увеличению КПД воздушного винта делает возможным в дальнейшем проектирование более сложных механизмов, направленных на увеличение КПД других изделий, потребляющих тепловую и электрическую энергию и связанных с улучшением экологии окружающего пространства. В современном мире это очень важно так как применение механизмов, увеличивающих КПД на машинах, генераторах ведет к уменьшению расхода топлива, а следовательно выбросов продуктов сгорания в атмосферу и улучшению состояния экологии окружающей среды и здоровья человека.

Цель данной работы : проектирование механизма увеличивающего КПД использования механической энергии воздушным винтом резиномоторной модели самолета.

Значение работы : На примере проектирования простого механизма рассматриваются вопросы проектирования более сложных механизмов, которые можно эффективно использовать в будущем при разработке новой авиационной техники.


1. Воздушный винт

В спокойном воздухе самолет может лететь горизонтально или с набором высоты только тогда, когда у него есть движитель. Таким движителем может быть воздушный винт или реактивный двигатель. Воздушный винт должен приводиться во вращение механическим двигателем. И в том и в другом случае тяга создается за счет того, что некоторая масса воздуха или выхлопных газов отбрасывается в сторону, противоположную движению.

Рис.4. Схема сил, действующих на воздушный винт.

При своем движении лопасть воздушного винта описывает в пространстве винтовую линию. В своем поперечном сечении она имеет форму крыльевых профилей. В правильно спроектированном винте все сечения лопасти встречают поток под некоторым наивыгоднейшим углом. При этом на лопасти развивается сила, аналогичная аэродинамической силе на крыле. Эта сила, будучи разложенной на две составляющие (в плоскости винта и перпендикулярную плоскости) дают тягу и сопротивление ращению данного элемента лопасти. Просуммировав силы, действующие на все элементы лопастей, получают тягу, развиваемую винтом, и момент, потребный для вращения винта (Рисунок 4). В зависимости от величины потребляемой мощности применяются воздушные винты с различным числом лопастей - двух, трех и четырех лопастные, а также соосные винты, вращающиеся в противоположных направлениях для уменьшения потерь мощности на закручивание отбрасываемой струи воздуха. Такие винты применяют на самолетах Ту-95, Ан-22, Ту-114. На Ту-95 установлены 4 двигателя НК-12 конструкции Николая Кузнецова (Рисунок 5). Концы лопастей у этих винтов вращаются со сверхзвуковой скоростью, создавая сильный шум (Натовское название самолета Ту-95 - «Медведь», принят на вооружение в 1956 году и ВВС Росси используют этот самолет по сей день). В авиамодельном спорте для получения высоких результатов на соревнованиях используют и однолопастные винты. Коэффициент полезного действия винта зависит от величины покрытия винта

(где - число лопастей, - максимальная ширина лопасти), чем меньше величина покрытия винта, тем более высокий КПД винта можно получить. Беспредельному уменьшению покрытия препятствует прочность лопасти. Многолопастные винты не выгодны, так как они понижают КПД.

Рис.5. Самолет ТУ-95 с соосным винтом.

Первые воздушные винты имели фиксированный в полете шаг, определяемый постоянным углом установки лопастей винта. Для сохранения достаточно высокого КПД во всем диапазоне скоростей полета и мощностей двигателя, а так же для флюгирования и изменения вектора тяги при посадке применяются винты изменяемого шага (ВИШ). В таких винтах лопасти поворачиваются во втулке относительно продольной оси механическим, гидравлическим или электрическим механизмом.

Для увеличения тяги и КПД при малой поступательной скорости и большой мощности воздушный винт помещают в профилированное кольцо, в котором скорость струи в плоскости вращения больше, чем у изолированного винта, и само кольцо вследствие циркуляции скорости создает дополнительную тягу.

Лопасти воздушного винта изготавливают из дерева, дюралюминия. Стали, магния, композиционных материалов. При скоростях полета 600-800 км/час КПД воздушного винта достигает 0,8-0,9. При больших скоростях под влиянием сжимаемости воздуха КПД падает. Поэтому воздушный винт выгоден на дозвуковых скоростях полета самолета.

Идею воздушного винта предложил в 1475 году Леонардо да Винчи (Рисунок 1), а применил его для создания тяги впервые в 1754 году М.В. Ломоносов в модели прибора для метеорологических исследований (Рисунок 2). К середине XIX века на пароходах применялись гребные винты, аналогичные воздушному винту. В XX веке воздушные винты стали применяться на дирижаблях, самолетах, аэросанях, вертолетах, аппаратах на воздушной подушке и др.


Рис. 1. Геликоптер. Идея, предложенная Леонардо да Винчи. Модель по эскизу Леонардо да Винчи.

Рис.2. Модель прибора М.В. Ломоносова для метеорологических исследований.

Методы аэродинамического расчета и проектирования воздушных винтов основаны на теоретических и экспериментальных исследованиях. В 1892-1910 годах русский инженер-исследователь, изобретатель С.К. Джевецкий разработал теорию изолированного элемента лопасти, а в 1910-1911 годах русские ученые Б.Н. Юрьев и Г.Х. Сабинин развили эту теорию. В 1912-1915 годах Н.Е. Жуковский создал вихревую теорию, дающую наглядное физическое представление о работе винта и других лопаточных устройств и устанавливающую математическую связь между силами, скоростями и геометрическими параметрами в такого рода машинах. В дальнейшем развитии этой теории значительная роль принадлежит В.П. Ветчинкину. В 1956 году советским ученым Г.И. Майкопаровым вихревая теория воздушного винта была распространена на несущий винт вертолета.

Н.Е. Жуковский

В настоящее время для создания крупногабаритных магистральных самолетов потребовались двигательные установки большей мощности и очень экономичные. Одним из вариантов таких двигателей стали турбовентиляторные двигатели. Они обладают большой тягой и хорошей экономичностью. На всех зарубежных самолетах устанавливаются именно такие двигатели.

Развитие идеи Леонардо да Винчи воплотилось в создании газотурбинных двигателей с осевым компрессором. Лопатки осевого компрессора создают при своем движении повышение давления воздуха. Каждая ступень повышает давление на определенную величину и в конце сжатый компрессором воздух попадает в камеру сгорания, где к нему подводится тепло в виде сгорающего горючего. После чего горячий газ поступает на турбину, которая может быть и осевой и радиальной. Турбина в свою очередь крутит компрессор, а потерявшие часть энергии газы попадают в сопло и создают реактивную тягу.

Лопатки компрессора, это часть лопасти воздушного винта. Таких лопаток в каждой ступени может быть несколько десятков. Между ступенями находится неподвижный спрямляющий аппарат, который состоит из таких же лопаток, только установленных под определенным углом к закрученному воздушному потоку. Закрутка происходит за счет движения лопаток компрессора по окружности. Количество ступеней компрессора может быть более 15.

Если всю энергию, полученную в результате сгоревшего топлива, срабатывать на турбине, то на валу двигателя получится избыток мощности, который можно использовать для привода воздушного винта. Получится турбовинтовой двигатель, и тяга будет создаваться воздушным винтом. Тяга за счет выхлопных газов будет минимальна.

Следующим этапом развития стали двухконтурные двигатели. В этих двигателях часть воздуха проходит не через компрессор (снаружи), обычно это происходит после первых двух ступеней компрессора. Такой двигатель называется турбовентиляторным. Тяга двигателя создается за счет вентилятора (первые две ступени компрессора) и реактивной струи выхлопных газов. В данном случае вентилятор, а это по сути - воздушный винт, находится в профилированном корпусе.

Следующий этап развития это турбовинтовентиляторный двигатель (НК-93). Почему стали изготавливать такие двигатели? Да потому, что КПД винта на дозвуковых скоростях полета может приближаться к 0.9, а КПД реактивной струи гораздо меньше. Турбовинтовентиляторный двигатель в будущем - самый перспективный двигатель для самолетов, летающих на дозвуковых скоростях.

Двухконтурный турбореактивный двигатель.

В 1985 году ОКБ имени Н.Д. Кузнецова началось изучение концепции винтовентиляторного двигателя высокой степени двухконтурности. Было определено, что закапотированный двигатель с соосными винтами обеспечит на 7% большую тягу, чем незакопотированный ТВВД с одноступенчатым вентилятором.

В 1990 году КБ приступило к проектированию такого двигателя, получившего обозначение НК-93. Он предназначался прежде всего для самолетов ИЛ-96М, Ту-204П, Ту-214, но заинтересованность в новом двигателе проявило и Министерство обороны (планируется установка его на военно-транспортном Ту-330).

Самолет ИЛ-76 ЛЛ с двигателем НК-93.

Двигатель НК-93.

НК-93 выполнен по трехвальной схеме с двигателем закопотированного двухрядного винтовентилятора противоположного вращения СВ-92 через редуктор. Редуктор планетарный с 7 сателлитами. Первая ступень винтовентилятора 8-лопастная, вторая (на нее приходится 60% мощности) - 10-лопастная. Все лопасти саблевидные с углом стреловидности 30 0 на первых 5 двигателях изготавливали из магниевого сплава. Теперь их изготавливают из углепластика.

Схема двигателя НК-93.

Технические характеристики нового двигателя в мире аналогов не имеют. По параметрам термодинамического цикла НК-93 близок к ныне разрабатываемым за рубежом двигателям, но имеет лучшую экономичность (на 5%). Летные испытания проводятся на самолете ИЛ-76ЛЛ. Изюминкой этой винтомоторной установки является планетарный редуктор и винтовентилятор. Угол установки лопастей может изменяться в пределах 110 0 при работе двигателя. Подобный редуктор применяется в двигателях НК-12 на самолете Ту-95 и подобный редуктор используется в установках перекачки газа на магистральных газопроводах (НК-38). Так что опыт у нас есть.

На занятиях в авиамодельной лаборатории Костромского областного центра детского (юношеского) технического творчества рассматриваются вопросы теории полета самолетов и летающих моделей. С целью улучшения летных характеристик резиномоторных моделей, а также улучшения результатов выступления на соревнованиях была рассмотрена работа винтомоторной установки. Рассмотрев характеристики резиномотора, энергия которого определяет высоту взлета модели, выяснено, что крутящий момент резины на валу винта имеет нелинейную характеристику. Максимальный крутящий момент превышает средний момент в 5-6 раз. Крутящий момент, необходимый для вращения винта равен

где

Аэродинамический коэффициент

Плотность воздуха

Диаметр винта

Обороты винта в секунду

Из теории известно, что для того, чтобы КПД винта был достаточно высоким, необходимо неограниченно увеличивать диаметр винта. Как известно, конструктивно это условие выполнить нельзя. Но, зная это видим один из возможных способов увеличения продолжительности полета резиномоторной модели. Было принято решение компенсировать изменение крутящего момента изменением диаметра винта. Конструктивно изменять диаметр винта на величину, пропорциональную изменению крутящего момента довольно сложно, поэтому введено еще и изменение шага винта. Получился винт изменяемого диаметра и шага (ВИДШ). В большой авиации изменение диаметра воздушного винта не применяется из-за сложности конструкции и больших скоростей на концах лопастей, соизмеримых со скоростью звука, уменьшающих КПД винта.

Можно увеличить КПД воздушного винта путем уменьшения покрытия винта. Это значит, сделать винт однолопастным. Такие винты сейчас применяются на скоростных кордовых моделях. Результаты очень положительные. Скорость возрастает на 10-15 км/час, но там другие условия работы. Двигатель работает на постоянных оборотах и постоянной максимальной мощности. На резиномоторных моделях энергия резиномотора переменна и не линейна. При использовании однолопастного винта с изменяемым диаметром и шагом возникают сложности с противовесом лопасти винта. Поэтому принято решение для увеличения КПД воздушного винта резиномоторной модели самолета использовать винт двулопастный с изменяемым диаметром и шагом (ВИДШ).


2. Технические требования к модели самолета класса F 1 B

На конкурс представлена резиномоторная модель самолёта по классификации ФАИ - F1B, изготовленная Надежиным Никитой под руководством Смирнова Виктора Борисовича.

С этой моделью Надежин Никита в 2013 году на Первенстве России по авиационному моделированию стал чемпионом.

Резиномоторная модель - это модель летательного аппарата, которая приводится в движение двигателем из резины; подъёмная сила модели возникает за счёт аэродинамических сил, воздействующих на несущие поверхности модели.

Технические характеристики резиномоторных моделей должны соответствовать требованиям FAI:

площадь несущей поверхности - 17-19 дм 2

минимальный вес модели без резиномотора - 200 г

максимальный вес смазанного резиномотора - 30 г.

Каждый участник соревнований имеет право на 7 зачётных полётов продолжительностью не более 3-х минут каждый. Запуск модели должен быть произведён в ограниченное время, объявленное заранее. Сумма времени всех зачётных полётов каждого участника используется для окончательного распределения мест среди участников.

За время полёта модель может улетать от места старта на расстояние до 2,5-3 км. Для поиска модели на неё устанавливается радиопередатчик весом 4 грамма с питанием на несколько суток. У участника соревнований имеется радиоприёмник с направленной антенной для обнаружения модели.

Взлёт модели осуществляется за счёт энергии резиномотора, которая приводит во вращение воздушный винт. Изменение крутящего момента резиномотора при его раскрутке происходит неравномерно и максимальное его значение превосходит среднее значение в 4-5 раз. Поэтому в первоначальный момент взлёта модели воздушный винт работает на нерасчетных режимах, т.е. идет проскальзывание винта в воздушном потоке. Для того чтобы аэродинамически загрузить воздушный винт и использовать имеющуюся энергию резиномотора в полном объёме, необходимо увеличивать диаметр винта и угол установки лопастей винта в начальный период взлёта. Это хорошо показано в книге А.А.Болонкина «Теория полета летающих моделей»


3. Описание конструкции воздушного винта

Особенностью данной модели является воздушный винт (Приложения №4,5,6), который во время взлёта модели изменяет диаметр и шаг. Механизм винта при изменении крутящего момента резиномотора позволяет изменять диаметр винта и угол установки лопастей. Это позволяет существенно увеличить КПД винта и, следовательно, высоту взлёта модели, и, соответственно, увеличиваются продолжительность полёта и результат на соревнованиях.

Конструкция механизма винта представлена на сборочном чертеже 10.1000.5200.00 СБ ВИДШ (винт изменяемого диаметра и шага, Приложение №3) и представляет собой корпус, в котором на 2-х подшипниках вращается вал винта из стали ЗОХГСА. На валу установлена ступица винта, также на 2-х подшипниках, далее идёт втулка, имеющая возможность вращаться вокруг вала. На втулке установлены шатуны, на которых подвешены лопасти винта, изготовленные из бальзы. Шатуны установлены на осях, расположенных на радиусе R=11 от оси вала и под углом к нему примерно 6 градусов. Втулка и ступица соединены между собой упругим элементом (резиновое кольцо).В ступице имеется паз ограничивающий перемещение втулки относительно ступици. Это определяет рабочие углы поворота втулки и величину выдвижения шатунов. При приложении к валу винта крутящего момента относительно лопастей винта возникает сила, проворачивающая втулку относительно ступицы, при этом происходит выдвижение шатунов из ступицы и их проворот вокруг поперечной оси вала за счёт движения осей шатуна по образующей однополостного гиперболоида вокруг вала. В конструкции предусмотрено изменение угла наклона осей шатунов, что позволяет регулировать диапазон изменения шага при регулировке модели. (в первоначальном варианте регулировка пределов изменения шага не предусматривалась, чертёж 10.0000.5100.00 СБ, Приложение №2). Перемещение шатунов пропорционально крутящему моменту, приложенному к валу винта, относительно лопастей. На втулке установлен стандартный стопор, стопорящий лопасти винта в нужном положении после раскрутки резиномотора. Изменение шага при увеличении диаметра на 25 мм составляет 5 0 , что на R лопасти=200мм изменяет шаг с 670 мм до 815 мм. Для изготовления деталей использованы малогабаритные шарикоподшипники и высокопрочные материалы Д16Т, ЗОХГСА, 65С2ВА, 12х18Н10Т и углепластик.


4. Описание модели самолета

Конструкция самой модели представлена на чертеже 10.0000.5000.00СБ. (Приложение№1,7)

Продольный набор крыла состоит из двух углепластиковых лонжеронов переменного сечения, углепластикового кессона, передней и задней кромок из углепластика.

Поперечный набор состоит из нервюр, выполненных из бальзы, покрытых сверху и снизу углепластиковыми накладками толщиной 0,2 мм. На крыле применен профиль «Андрюков». Центр тяжести расположен на 54% САХ.

Весь набор собран на эпоксидной смоле. Крыло обтянуто синтетической бумагой (полиэстером) на эмалите. Для удобства транспортирования крыло имеет поперечный разъём с узлами крепления. Стабилизатор и киль выполнены аналогично крылу.

Фюзеляж состоит из двух частей. Передняя силовая часть выполнена из трубки, изготовленной из СВМ (кевлар) и углепластикового пилона, в который установлены программный механизм (таймер) и передатчик для поиска модели, спереди и сзади вклеены силовые шпангоуты из алюминиевого сплава Д16Т.

Хвостовая часть представляет конус и состоит из 2-х слоёв высокопрочной алюминиевой фольги Д16Т толщиной 0,03 мм, между которыми вклеен слой углеткани на эпоксидной смоле. На конце хвостовой части установлена площадка для крепления стабилизатора и механизм перебалансировки и посадки модели.

На модели используются резиномоторы из резины FАI “Super sport”, состоящие из 14 колец сечением 1/8 //

Применение в данном классе моделей механизма позволяющего одновременно изменять диаметр и шаг винта в зависимости от крутящего момента резиномотора, позволило увеличить коэффициент полезного действия воздушного винта, что выразилось в прибавлении высоты взлета модели на 10-12 метров, продолжительность полета увеличилась на 35-40 секунд по сравнению с другими моделями, а также улучшилась стабильность полетов. И как следствие - победа на соревнованиях.


Заключение

Вывод : Принцип преобразования поступательного движения во вращательное, заложенное в данной конструкции, может использоваться в случаях, когда нельзя использовать простые рычажные механизмы.

Практические рекомендации : Подобный механизм можно использовать в приводе элеронов крылатой ракеты. Поступательное движение тяги внутри крыла, вдоль задней кромки преобразуется во вращательное движение элерона. Использовать другие механизмы довольно сложно из-за малой строительной высоты профиля крыла в районе расположения элерона и удаления элерона от корпуса ракеты.

Таким образом, на примере проектирования простейшего механизма по увеличению КПД можно рассмотреть вопросы по созданию более совершенных механизмов преобразования энергии углеводородов в механическую тепловую и электрическую энергию, что в современных условиях позволит снизить уровень выброса вредных веществ в атмосферу и улучшит состояние экологии окружающей среды и здоровье Человека.


Список литературы, программного обеспечения

1.А.А.Болонкин. Теория полета летающих моделей, изд. ДОСААФ 1962г.

2.Э.П.Смирнов, Как спроектировать и построить летающую модель самолёта, изд. ДОСААФ 1973г.

3. Шмитц Ф.В. Аэродинамика малых скоростей, изд. ДОСААФ 1961г.

4. Проектирование выполнено в программе Компас V-11

Приложение 1.

Приложение 2.

Приложение 3.

Воздушный винт является агрегатом, предназначенным для создания силы тяги, которая представляет собой реакцию, отбрасываемую винтом воздушного потока, создавая силу тяги, воздушный винт преобразует механическую энергию двигателя, в работу совершаемую при поступательном движении ЛА.

Требования:

1. высокий КПД;

2. автоматическое изменение угла установки лопастей в зависимости от режима полета и работы двигателя;

3. диапазон углов установки лопастей должен обеспечивать min положительную тягу на режиме малого газа. Работу винта флюгирования на режиме отрицательной тяги

4. скорость поворота лопастей при увеличении угла установки должен быть не менее 10 с/c;

5. должны быть автоматические защитные устройства для предотвращения возникновения отрицательной тяги;

6. защита лопастей и обтекателя втулки винта (кока) от обледенения.

Классификация винтов . Угол атаки лопастей винта зависит от скорости полета при не низменном угле установки. Это явление имеет место у винтов фиксированного шага. Основной недостаток таких винтов состоит в том, что на взлете при малой скорости полета они могут быть тяжелыми и не обеспечивается взлетной мощности двигателя. При горизонтальном полете при большой поступательной скорости винт оказывается легким и скорость вращения может возрастать до недопустимо больших значений, при которых не обеспечивается надежность работы двигателя. В прошлом, когда скорости полета были небольшими, применялись эти винты. По мере роста скорости полета стал применяться винты изменяемого шага – ВИШ (диапазон установки 100) с дальнейшим ростом скорость полета, т.е. с увеличением углов j - установки, стали применять винты с автоматическими системами регулирования скорости вращения, путем изменения j от режима полета. Винты с такими системами регулирования называют автоматическими воздушными винтами – АВИШ.

Аэродинамические силы.

Точка приложения результирующей силы находится в центре давления

Аэродинамические силы появляются в результате воздействия воздушного потока на лопасти и распределение по всей поверхности. Такую схему нагружения лопасти можно рассматривать как балку, закрепленную одним концом, и подверженную действию распределенной нагрузки, которая создает изгибающий и крутящий моменты. Центр давления находится впереди плоскости вращения. зависит от углов атаки лопасти и результирующих скоростей набегающего потока. Из-за сравнительно малых плеч а и b величина момента аэродинамических сил невелика. При отрицательных углах атаки лопастей направление меняется так, что крутящие моменты и стремятся повернуть лопасть в сторону уменьшения угла установки.

Шаг и поступь винта . Геометрический шаг винта H – расстояние, на которое передвинулся бы винт вдоль оси вращения за один оборот при ввинчивании в специально сделанную для него гайку = r – расстояние до рассматриваемого сечения. Винт характеризуется , R – радиус винта. Из (1) следует, что шаг винта задан скоростью изменения φ. Воздух (упруг и сжимаем) за один оборот винт перемещается на величину значительно меньшую, чем H – поступь винта , - скорость полета м/с, n – об/с.

При расчете пользуются относительной поступью , - ,безразмерна и называется характеристикой режима или коэффициентом скорости винта.

Режимы работы винтов

При постоянном угле установки угол атаки лопастей находится в зависимости от величины скорости полета. При увеличении скорости полета угол атаки уменьшается. В этом случае говорят-винт «облегчается», так как момент сопротивления вращению винта уменьшается, а следовательно, снижается потребная мощность двигателя. Это вызывает увеличение скорости вращения. При падении скорости полета, наоборот, угол атаки увеличивается и винт «затяжеляется», скорость вращения снижается.

При большом увеличении скорости полета или при малом угле установки угол атаки может стать равным нулю и даже отрицательным. В случае лопасти встречают воздушный поток не рабочей (тыльной) частью, а спинкой (передней частью). При этом тяга и мощность могут стать отрицательными.

Тяга Р и коэффициент тяги считаются положительными, если направление тяги совпадает с направлением движения летательного аппарата, при противоположном направлении - отрицательными. В этом случае винт создает сопротивление.

Мощность винта Т и коэффициент мощности считаются положительными, когда крутящий момент от аэродинамических сил винта противоположен направлению его вращения. Если крутящий момент этих сил поддерживает вращение винта, т. е. сила сопротивления вращению , мощность винта считается отрицательной.

При изменении и в широком диапазоне относительная поступь может изменяться от нуля до бесконечно больших положительных значений (когда ).

Рассмотрим наиболее характерные режимы работы винта.

Режим, при котором поступательная скорость = 0, следовательно, и равны нулю, называется режимом работы винта - на месте (рис. слева). На графике этому режиму соответствует точка а , где коэффициенты тяги и мощности обычно имеют максимальные значения. Угол атаки лопастей а при работе винта на месте примерно равен углу установки . Так как , то винт при работе на месте никакой полезной работы не производит.

Режим работы винта, когда при наличии поступательной скорости создается положительная тяга, называется пропеллерным режимом (рис. справа). Он является основным и наиболее важным режимом работы, который используется при рулении, взлете, наборе высоты, горизонтальном полете самолета, а частично - на планировании и посадке. На графике этому режиму полета соответствует участок аб, исключая точки а и б. По мере увеличения относительной поступи уменьшаются значения коэффициентов тяги и мощности. Коэффициент полезного действия винта при этом сначала возрастает, достигая максимума в точке б, а затем быстро падает. Точка б характеризует оптимальный режим работы винта для данного значения угла установки лопастей. Таким образом, пропеллерному режиму работы винта соответствуют положительные значения коэффициентов , , .

Режим работы, при котором винт не создает ни положительной, ни отрицательной тяги (сопротивления) называется режимом нулевой тяги. На этом режиме винт как бы свободно ввинчивается в воздух, не отбрасывая его назад и не создавая тяги. Режиму нулевой тяги на графике соответствует точка в. Здесь коэффициент тяги и к.п.д. винта равны нулю. Коэффициент мощности имеет некоторое положительное значение. Это означает, что для преодоления момента сопротивления вращению винта на этом режиме требуется мощность двигателя.

Режим нулевой тяги может иметь место при планировании самолета. Угол атаки лопастей при этом, как правило, несколько меньше нуля.

Режим работы винта, когда создается отрицательная тяга (сопротивление) при положительной мощности на валу двигателя, принято называть режимом торможения , или тормозным режимом винта. На этом режиме угол притекания струй больше угла установки , т. е. угол атаки лопастей - величина отрицательная. В данном случае воздушный поток оказывает давление на спинку лопасти, чем и создает отрицательную тягу. На графике этому режиму работы винта соответствует участок, заключенный между точками б и г, на котором коэффициенты и имеют отрицательные значения, а значения коэффициента изменяются от некоторого положительного значения до нуля. Мощность двигателя, как и в предыдущем случае, требуется для преодоления момента сопротивления вращению винта.

Отрицательная тяга винта используется для сокращения длины послепосадочного пробега. Для этого лопасти специально переводят на минимальный угол установки , при котором во время пробега самолета угол атаки отрицательный.

Режим работы, когда мощность на валу двигателя равна нулю, а винт вращается за счет энергии набегающего потока (под действием аэродинамических сил, приложенных к лопастям), называется режимом авторотации . Двигатель при этом развивает мощность, необходимую лишь для преодоления внутренних сил и моментов трения, образующихся при вращении винта. На графике этому режиму соответствует точка г. Тяга винта, как и на режиме торможения, отрицательная.

Режим работы, при котором мощность на валу двигателя отрицательна, а винт вращается за счет энергии набегающего потока, называется режимом ветряка . На этом режиме винт не только не потребляет мощности двигателя, а сам вращает вал двигателя за счет энергии набегающего потока. На графике этому режиму соответствует участок правее точки г. Режим ветряка применяют для запуска остановившегося двигателя в полете. В этом случае вал двигателя раскручивается до необходимой для запуска скорости вращения, не требуя специальных пусковых устройств.

Торможение самолета при пробеге также начинается на режиме ветряка и проходит последовательно стадии авторотации и торможения до режима нулевой тяги.

При обтекании лопасти потоком каждый элемент аналогично элементу крыла создает полную аэродинамическую силу, которую удобно разложить на составляющие – силу тяги (Р в) и силу сопротивления вращения (Х вр).

Сила Х вр создает момент сопротивления вращению, на преодоление которого должен быть затрачен вращающий момент двигателя. Таким образом, сила Х вр является «вредной» (направлена против вращения), а сила Р в, идущая на преодоление лобового сопротивления самолета, – полезной.

Рассмотрим характерные режимы работы элемента лопасти винта (рис. 2.10).

1. Режим работы на месте и режим положительной тяги. При работе на месте V = 0. Сила тяги на элементе лопасти максимальна, так как угол атаки максимален.

С увеличением поступательной скорости уменьшается угол атаки элемента лопасти и сила тяги. Это основной рабочий режим элемента лопасти, при котором лопасть обтекается потоком с положительными углами атаки. Режим положительной тяги называется пропеллерным (рис. 2.10, 1).

Рис. 2.10. Режимы работы винта:

1 – пропеллерный; 2 – нулевой тяги; 3 – торможения; 4 – авторотации; 5 – ветряка

2. Режим нулевой тяги. При увеличении поступательной скорости уменьшается угол атаки элемента лопасти и полная аэродинамическая сила (она разворачивается к плоскости вращения, и ее составляющая Р уменьшается, приближаясь к нулю). Элемент лопасти работает с небольшим отрицательным углом атаки (–0,5...–1°). Этот режим характерен для планирования с высоты полета самолета при малых режимах.

3. Режим торможения. При дальнейшем увеличении поступательной скорости угол атаки элемента лопасти еще более уменьшается. Полная аэродинамическая сила будет направлена в сторону, обратную полету, отрицательная тяга небольшая.

4. Режим авторотации. При увеличении скорости полетаполная аэродинамическая сила будет направлена по оси вращения винта против полета. Сила сопротивления вращению элемента лопасти в этом случае равна нулю. Винт мощность от двигателя не потребляет и не отдает, он вращается по инерции. Угол атаки отрицательный.

5. Режим ветряка. При больших значениях и отрицательных углах атаки полная аэродинамическая сила отклоняется еще больше, создается значительная отрицательная тяга, а сила сопротивления вращению элемента лопасти оказывается направленной в сторону вращения и, действуя относительно оси вращения, раскручивает вал двигателя.

Все эти режимы винт проходит при отказе двигателя. Из пропеллерного режима винт уходит на режим ветряка и вращается в этом режиме.

Если винт не флюгируется, то необходимо выдерживать наивыгоднейшую скорость планирования, при которой качество максимальное, и произвести посадку на ближайшем аэродроме.