Папа, а почему на ноль делить нельзя? Деление на ноль. Увлекательная математика

В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и «на ноль делить нельзя «. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»

Почему нельзя делить на ноль?

Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.

Возьмем число 10 и поделим его на 2 . Это подразумевает, что мы взяли 10 каких-либо предметов и расставили их по 2 равным группам, то есть 10: 2 = 5 (по 5 предметов в группе). Этот же пример можно записать и с помощью уравнения x * 2 = 10 х здесь будет равен 5 ).

Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0 .

Получится следующее: 10: 0 = х , следовательно х * 0 = 10 . Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0 . В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0 . Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.

Когда можно делить на ноль?

Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х , а значит х * 0 = 0 .

Предположим, что х=0 , тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0 , а значит и 0 * 0 = 0 .

Но что если х ≠ 0 ? Предположим, что х = 9 ? Тогда 9 * 0 = 0 и 0: 0 = 9 ? А если х=45 , то 0: 0 = 45 .

Мы действительно можем делить 0 на 0 . Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно .

Почему 0: 0 = NaN

Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число) .

Почему x: 0 = а x: -0 = —

Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0 иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞) .

Так можно ли делить на ноль?

Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя — это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.

В школе нас всех учат простому правилу, что делить на ноль нельзя. При этом, когда мы задаем вопрос: «Почему?», нам отвечают: «Это просто правило и его надо знать». В этой статье я постараюсь вам объяснить, почему нельзя делить на ноль. Почему не правы те люди, которые говорят, что на ноль делить можно и тогда получится бесконечность.

Почему нельзя делить на ноль?

Формально, в математике, существует только два действия. Сложение и умножение чисел. Ну что же тогда с вычитанием и делением? Рассмотрим такой пример. 7-4=3, все мы знаем, что семь минус четыре будет равняться трём. На самом деле этот пример можно, формально, рассматривать, как способ решить уравнения x+4=7. То есть, мы подбираем такое число, которое в сумме с четверкой даст 7. Тогда мы не долго подумаем и поймем, что это число равно трём. То же самое с делением. Допустим 12/3. Это будет то же самое, что и х*3=12.

Мы подбираем такое число, которое при умножении на 3 даст нам 12. В данном случаем это получится четыре. Это достаточно очевидно. Что же с примерами вида 7/0. Что будет если мы запишем семь делить на ноль? Это значит, что мы, как будто, решаем уравнение вида 0*х=7. Но это уравнение не имеет решения, ведь если ноль умножить на любое число, то получиться всегда ноль. То есть решения нет. Это записывают либо словами решений нет, либо значком, который означает пустое множество.

Другими словами

Вот смысл этого правила. Делить на ноль нельзя, потому что соответствующее уравнение, ноль умножить на икс равное семи или любому числу, которое мы пытаемся делить на ноль, не имеет решений. Самые внимательные могут сказать, что если мы поделим ноль на ноль, то получится достаточно справедливо, что, если 0*X=0. Все замечательно, ноль умножаем на какое-то число, получаем ноль. Но тогда у нас решением может быть любое число. Если мы посмотрим х=1, 0*1=0, х=100500, 0*100500=0. Здесь подойдет любое число.

Так почему мы должны выбирать какое-то одно из них? У нас действительно нет каких-то соображений, по которым мы можем взять из этих чисел выбрать одно и сказать, что это решения уравнений. Поэтому решений бесконечно много и это тоже неоднозначная задача, в которой считается, что решений нет.

Бесконечность

Выше я рассказал вам причины, по которым делить нельзя, теперь хочу поговорить с вами о . Давайте попробуем с осторожностью подойти к операции деления на ноль. Поделим число 5 сначала на два. Мы знаем, что получится десятичная дробь 2.5. Теперь уменьшим делитель и поделим 5 на 1, будет 5. Теперь 5 мы поделим на 0,5. Это то же самое, что и пять поделим на одну вторую, или то же самое, что и 5*2, то будет 10. Обратите внимание, результат деления, то есть частное, увеличивается: 2,5, 5, 10.

Теперь давайте поделим 5 на 0.1, это будет то же самое, что и 5*10=50, частная снова увеличилась. При этом делитель мы уменьшали. Если мы поделим 5 на 0.01, это будет, то же самое, что и 5*100=500. Смотрите. Чем меньше мы делаем делитель, тем больше становится частное. Если мы 5 поделим на 0.00001, получиться 500000.

Подведем итог

Что же тогда такое деление на ноль, если смотреть вот в этом смысле? Заметим, как мы уменьшали наше частное? Если нарисовать ось, то на ней видно, что у нас сначала была двойка, потом единичка, потом 0.5, 0.1, и так далее. Мы приближались к нолю все ближе и ближе справа, но до ноля мы так и не дошли. Берем все меньше и меньше число и делим на него наше частное. Становится все больше и больше. В данном случае пишут, что мы делим 5 на Х, где икс бесконечно мал. То есть он становиться все ближе и ближе к нолю. Вот как раз-таки в этом случае при делении пятерки на Х мы получим бесконечность. Бесконечно большое число. Здесь возникает нюанс.

Если мы приближаемся к нолю справа, то это бесконечно мало у нас будет положительным, и мы получаем плюс бесконечность. Если же мы приближаемся к иксу слева, то есть если мы сначала поделим на -2, потом на -1, на -0.5, на -0.1 и так далее. У нас будет получаться отрицательное частное. И тогда пять деленное на икс, где икс будет бесконечно малым, но уже слева, будет равно минус бесконечности. В данном случае пишут: икс стремится к нолю справа, 0+0, показывая, что к нолю мы стремимся справа. Допустим если мы к тройке стремились справа, в данном случае пишут икс стремится слева. Соответственно к тройке мы бы стремились слева, записывая это как икс стремится к 3-0.

Как график функций может помочь

Понять это лучше помогает график функции, который мы проходили еще все в школе. Функция называется обратная зависимость, а график её это гипербола. Выглядит гипербола следующим образом. Это кривая, асимптотами которой являются ось икс и игрек. Асимптота-это прямые, к которым кривая стремится, но никогда их не достигнет. Такая вот математическая драма. Мы видим, что чем ближе мы подходим к нолю, тем больше становится наше значение игрек. Чем меньше становится икс, то есть, при стремлении, иксе к нолю справа игрек становиться все больше и больше, и устремляется в плюс бесконечность. Соответственно, при стремлении к нолю слева, когда икс стремится к нолю слева, т.е икс стремиться к 0-0, игрек стремится у нас к минус бесконечности. По-правильному это записывается так. Игрек стремится к минус бесконечности, при Х стремящимся к нолю слева. Соответственно мы запишем игрек стремится к плюс бесконечности, при иксе стремящимся к нолю справа. То есть, по сути, мы не делим на ноль, мы делим на бесконечно малую величину.

И те, кто говорят, что делить на ноль можно, мы просто получим бесконечность, они просто имею в виду, что делить можно не на ноль, а можно делить на число близкое к нолю, то есть на бесконечно малую величину. Тогда мы получим плюс бесконечность, если мы делим на бесконечно малое положительное и минус бесконечность мы делим на бесконечно малое отрицательное.

Я надеюсь, что эта статья помогла вам разобраться в вопросе, который мучает большинство с детства, почему же нельзя делить на ноль. Почему нас заставляют учить какое-то правило, а ничего не объясняют. Надеюсь статья помогла вам разобраться в том, что действительно на ноль делить нельзя, а те, кто говорят, что на ноль делиться можно, на самом деле имеют в виду, что можно делить на бесконечно малую величину.

Евгений ШИРЯЕВ, преподаватель и руководитель Лаборатории математики Политехнического музея , рассказал "АиФ" о делении на ноль:

1. Юрисдикция вопроса

Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?

Ни конституция, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах "АиФ", попробовать что-нибудь разделить на ноль. Например, тысячу.

2. Разделим, как учили

Вспомните, когда вы только узнали, как делить, первые примеры решали с проверкой умножением: результат, умноженный на делитель, должен был совпасть с делимым. Не совпал - не решили.

Пример 1. 1000: 0 =...

Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.

Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:

100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0

Ноль умножением все превращает в себя и никогда - в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.

3. Нюанс

Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?

Пример 2. 0: 0 = ...

Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.

Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И, по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса - это не Алиса, а Мэри-Энн, а обе они - сон кролика.

4. Что там про высшую математику?

Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось - ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать - дело безнадежное и невозможное. А значит... интересное! Дубль два.

Пример 3. Придумать, как разделить 1000 на 0.

А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать то, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:

Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:

1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.

Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:

Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.

В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:

При этом подразумевается аналогичная замена и для делимого:

1000 ↔ { 1000, 1000, 1000,... }

Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.

Посмотрим на последовательность частных:

Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:

Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:

При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.

5. И здесь нюанс с двумя нулями

Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном - последовательность с нулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:

Неопределенная ситуация. И так и называется: неопределенность вида 0/0 . Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.