Нарушение углеводного обмена болезни. Симптомы болезни - нарушения углеводного обмена. Патогенез гипогликемической комы

Нарушение гидролиза и всасывания углеводов

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока и др.) либо дисахаридаз. При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов страдает при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу.

Гликогенозы

Гликогенозы - группа наследственных заболеваний, обусловленная недостаточностью ферментов, участвующих в синтезе или распаде гликогена.

Гликогеноз О типа (агликеноз) развивается при недостаточности гликогенсинтазы. Характеризуется резким снижением запасов гликогена в печени, наблюдается гипогликемический синдром (вплоть до развития комы). При недостаточности гликогенсинтазы больные умирают в раннем возрасте.

Недостаточность ферментов, участвующих в распаде гликогена, приводит к его накоплению в органах и тканях (таблица 5).

Нарушения промежуточного обмена углеводов

1. Гипоксические состояния (при недостаточности дыхания или кровообращения, при анемиях и др.). Анаэробная фаза превращения углеводов преобладает над аэробной. Происходит избыточное накопление в тканях и крови молочной и пировиноградной кислот. Возникает ацидоз. Нарушаются ферментативные процессы. Снижается образование АТФ.

2. Расстройства функции печени, где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз.

3. Гиповитаминоз В 1 . Нарушается окисление ПВК, т.к. витамин B 1 входит в состав пируватдегидрогеназного комплекса. ПВК накапливается в избытке и частично переходит в молочную кислоту, содержание которой также возрастает. ПВК - яд для нервных окончаний. При увеличении ее концентрации в 2-3 раза возникают нарушения чувствительности, невриты, параличи и др. Уменьшается образование из ПВК ацетил-KoA.

При гиповитаминозе B 1 нарушается пентозофосфатный путь обмена углеводов, в частности, образование рибозы.

Таблица 5. Болезни, связанные с нарушением обмена гликогена

Название болезни Причины Симптомы
Болезнь Гирке, гликогеноз I типа Наследственный дефект синтеза глюкозо-6-фосфатазы в печени и почках Увеличение печени, почек, повышение концентрации пирувата и лактата в крови, ацидоз, гипогликемия, судороги, задержка роста.
Болезнь Помпе, гликогеноз II типа Отсутствие фермента a-1,4-глюкозидазы Аномальное накопление гликогена в клетках. Мышечная слабость. Увеличиваются размеры сердца, печени, почек, селезенки.
Болезнь Кори, гликогеноз III типа Снижение активности амило-(1-6)-гликозидазы и (или) гликогенветвящего фермента Накапливается остаточный разветвленный декстрин. Задержка роста, увеличение печени, мышечная слабость вследствие накопления остаточного декстрина в мышцах.
Болезнь Андерсена, гликогеноз IV типа Нарушение активности гликогенветвящего фермента Увеличение печени, желтуха, цирроз, гипогликемия.
Болезнь Мак-Ардла, гликогеноз V типа Недостаточность мышечной фосфорилазы Скелетные мышцы увеличиваются в объеме, становятся очень плотными. Мышечная слабость, мышечные спазмы, тахикардия при физической нагрузке.
Болезнь Херса, гликогеноз VI типа Недостаточность фермента печеночной фосфорилазы Увеличение печени в результате, задержка роста, гиперлипемия, гипергликемия.

Гипер- и гипогликемия

При некоторых состояниях можно наблюдать повышение содержания глюкозы в крови - гипергликемию , или понижение концентрации глюкозы - гипогликемию .

Для диагностики гипергликемий исследуют изменения уровня глюкозы в крови во времени, обычно после приема 50 г или 100 г глюкозы, растворенной в теплой воде, - так называемая . При оценке построенных гликемических кривых (рис. 43) обращают внимание на время максимального подъема, высоту этого подъема и время возврата концентрации глюкозы к исходному уровню.

У здорового человека после приема глюкозы содержание ее в крови нарастает, достигая максимума через 30-45 мин. Затем концентрация глюкозы в крови начинает падать и через 2 ч снижается до нормы, а через 3 ч оказывается даже несколько ниже нормы.

Для оценки гликемических кривых введено несколько показателей, из которых наиболее важное значение имеет коэффициент Бодуэна :

[(В-А)/А]х100, %,

где А - уровень глюкозы в крови натощак; В - максимальное содержание глюкозы в крови после нагрузки глюкозой.

В норме этот коэффициент составляет около 50%. Значения, превышающие 80%, свидетельствуют о серьезном нарушении обмена углеводов.

Гормональные гипергликемии возникают при нарушении функции эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена.

Одна из причин гипергликемии – сахарный диабет.

Диабет 1 типа (инсулинзависимый диабет, ИЗСД) связан со снижением образования инсулина. Начинается обычно в юношеском возрасте как следствие аутоиммунного разрушения β-клеток в островках поджелудочной железы.

Диабет 2 типа начинается в зрелом возрасте, развивается постепенно. Повреждены механизмы передачи инсулинового сигнала, причем концентрация инсулина в крови может быть нормальной или даже повышенной (инсулинонезависимый диабет, ИНСД) . Рецепторы клеток-мишеней теряют способность соединяться с молекулой инсулина.

Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

1. Резко снижен синтез глюкокиназы и гликогенсинтетазы, что обусловливает резкое замедление синтеза гликогена.

2. Активность глюкозо-6-фосфатазы возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы.

3. Затруднено прохождение глюкозы через клеточные мембраны.

4. Ускоряется глюконеогенез, т.к. инсулин подавляет активность пируваткарбоксилазы и глюкозо-6-фосфатазы.

Т.о., при сахарном диабете имеют место избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание глюкозы в крови при тяжелых формах диабета может достигать 4-5 г/л и выше. При этом возрастает осмотическое давление крови, что ведет к обезвоживанию клеток организма. В связи с обезвоживанием глубоко нарушаются функции центральной нервной системы (гиперосмолярная кома).

Гликемическая кривая при диабете по сравнению с таковой у здоровых значительно растянута во времени (рис. 43).

Гипергликемия развивается также при повышении продукции глюкагона - гормона α-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладает адреналин.

К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы).

Гипергликемия иногда наблюдается во время беременности, при органических поражениях ЦНС, расстройствах мозгового кровообращения, болезнях печени воспалительного или дегенеративного характера.

Гипогликемия связана с понижением функций тех эндокринных желез, повышение секреции которых приводит к гипергликемии. Гипогликемию можно наблюдать при гипофизарной кахексии, аддисоновой болезни, гипотиреозе, аденомах поджелудочной железы вследствие повышенной продукции инсулина. Гипогликемия может быть вызвана голоданием, продолжительной физической работой, приемом β-ганглиоблокаторов, иногда отмечается при беременности, лактации. Гипогликемия возникает при введении больным сахарным диабетом больших доз инсулина.

Глюкозурия

Глюкозурия является результатом нарушения углеводного обмена вследствие патологических изменений в поджелудочной железе (сахарный диабет, острый панкреатит и т.д.).

При тяжелых формах сахарного диабета содержание глюкозы в моче может достигать 8-10%. Осмотическое давление мочи повышается. Суточный диурез возрастает до 5-10 л и более (полиурия) . Развивается обезвоживание организма и как следствие его - усиленная жажда (полидипсия) .

Недостаточность резорбции глюкозы в почечных канальцах является причиной глюкозурии почечного происхождения.

Глюкозурия может возникнуть при некоторых острых инфекционных и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга, при отравлениях морфином, стрихнином, хлороформом, фосфором.

Может быть глюкозурия алиментарного происхождения, глюкозурия беременных и глюкозурия при нервных стрессовых состояниях (эмоциональная глюкозурия).

Контрольные вопросы

1. Перечислите основные пищевые источники углеводов. Какова суточная потребность в углеводах у взрослого человека?

2. Охарактеризуйте процесс переваривания и всасывания углеводов в пищеварительном тракте.

3. Приведите схему синтеза гликогена из глюкозы, перечислите ферменты, участвующие в этом процессе.

4. Рассмотрите механизм фосфоролитического расщепления гликогена. Какова роль гликогена в поддержании гомеостаза глюкозы?

5. Каковы основные этапы гликолиза? В чем сходство и различие между аэробным и анаэробным гликолизом?

6. Какова энергетическая ценность распада глюкозы в аэробных условиях?

7. Как функционируют глицеролфосфатный челночный механизм и малат-аспартатная челночная система?

8. Какие реакции включает цикл Кори? В чем его биохимическая функция?

9. В чем сходство и различие гликолиза и брожения?

10. Что понимают под глюконеогенезом? Каковы основные стадии этого процесса?

10. Какие вещества могут быть субстратами для глюконеогенеза?

11. Каковы особенности обмена фруктозы и галактозы?

12. Какие гормоны участвуют в регуляции гомеостаза глюкозы?

13. Каков химизм пентозофосфатного пути обмена глюкозы?

14. Какова биологическая роль восстановленных форм НАДФ, образующихся в пентозофосфатном пути?

15. Перечислите известные Вам нарушения обмена углеводов на стадии переваривания и всасывания. Могут ли эти нарушения иметь наследственный характер?

16. Какие причины могут привести к возникновению гипергликемии?

17. Каковы причины сахарного диабета?

18. Какими особенностями характеризуется углеводный обмен у больных сахарным диабетом?

19. Назовите причины гипогликемии.

20. Какие причины могут вызвать появление глюкозурии?


Углеводный обмен , процессы усвоения углеводов в организме; их расщепление с образованием промежуточных и конечных продуктов, а также новообразование из соединений, не являющихся углеводами, или превращение простых углеводов в более сложные.

Основная роль углеводов определяется их энергетической функцией. Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.

Уровень глюкозы в крови составляет 3,3-5,5 ммоль/л (60-100 мг%) и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2-1,7 ммоль/л (40-30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

При каких заболеваниях возникает нарушение углеводного обмена

Нарушения углеводного обмена

1. Нарушения гидролиза и всасывания углеводов

Всасывание углеводов нарушается при недостаточности амилолитических ферментов желудочно-кишечного тракта (амилаза панкреатического сока и др.). При этом поступающие с пищей углеводы не расщепляются до моносахаридов и не всасываются. Развивается углеводное голодание.

Всасывание углеводов страдает также при нарушении фосфорилирования глюкозы в кишечной стенке, возникающем при воспалении кишечника, при отравлении ядами, блокирующими фермент гексокиназу (флоридзин, монойодацетат). Не происходит фосфорилирования глюкозы в кишечной стенке и она не поступает в кровь.

Всасывание углеводов особенно легко нарушается у детей грудного возраста, у которых еще не вполне сформировались пищеварительные ферменты и ферменты, обеспечивающие фосфорилирование и дефосфорилирование.

Причины нарушения углеводного обмена, вследствие нарушения гидролиза и всасывания углеводов:
- гипоксия
- нарушение функций печени - нарушение образования гликогена из молочной кислоты - ацидоз (гиперлакцидемия).
- гиповитаминоз В1.

2. Нарушения синтеза и расщепления гликогена

Синтез гликогена может изменяться в сторону патологического усиления или снижения.
Усиление распада гликогена происходит при возбуждении центральной нервной системы. Импульсы по симпатическим путям идут к депо гликогена (печень, мышцы) и активируют гликогенолиз и мобилизацию гликогена. Кроме того, в результате возбуждения центральной нервной системы повышается функция гипофиза, мозгового слоя надпочечников, щитовидной железы, гормоны которых стимулируют распад гликогена.

Повышение распада гликогена при одновременном увеличении потребления мышцами глюкозы происходит при тяжелой мышечной работе.

Снижение синтеза гликогена происходит при воспалительных процессах в печени - гепатитах, в ходе которых нарушается ее гликоген-образовательная функция.

При недостатке гликогена тканевая энергетика переключается на жировой и белковый обмены. Образование энергии за счет окисления жира требует много кислорода; в противном случае в избытке накапливаются кетоновые тела и наступает интоксикация. Образование же энергии за счет белков ведет к потере пластического материала.

Гликогеноз - нарушение обмена гликогена, сопровождающееся патологическим накоплением гликогена в органах.

Болезнь Гирке - гликогеноз, обусловленный врожденным недостатком глюкозо-6-фосфатазы - фермента, содержащегося в клетках печени и почек. Глюкозо-6-фосфата-за отщепляет свободную глюкозу от глюкозо-6-фосфата, что делает возможным трансмембранный переход глюкозы из клеток этих органов в кровь. При недостаточности глюкозо-6-фосфатазы глюкоза задерживается внутри клеток. Развивается гипогликемия. В почках и печени накапливается гликоген, что ведет к увеличению этих органов. Происходит перераспределение гликогена внутри клетки в сторону значительного накопления его в ядре. Возрастает содержание в крови молочной кислоты, в которую усиленно переходит глюкозо-6-фосфат. Развивается ацидоз. Организм страдает от углеводного голодания.
Больные дети, как правило, рано умирают.

Гликогеноз при врожденном дефиците α-глюкозидазы. Этот фермент отщепляет глюкозные остатки от молекул гликогена и расщепляет мальтозу. Он содержится в лизосомах и разобщен с фосфорилазой цитоплазмы. При отсутствии α-глюкозидазы в лизосомах накапливается гликоген, который оттесняет цитоплазму, заполняет всю клетку и разрушает ее. Содержание глюкозы в крови нормальное. Гликоген накапливается в печени, почках, сердце. Обмен веществ в миокарде нарушается, сердце увеличивается в размерах. Больные дети рано умирают от сердечной недостаточности.

3. Нарушения промежуточного обмена углеводов

К нарушению промежуточного обмена углеводов могут привести:

1. Гипоксические состояния (например, при недостаточности дыхания или кровообращения, при анемиях и др.), анаэробная фаза превращения углеводов преобладает над аэробной фазой. Происходит избыточное накопление в тканях и крови молочной и пировиноградной кислот. Содержание молочной кислоты в крови возрастает в несколько раз. Возникает ацидоз. Нарушаются ферментативные процессы. Снижается образование АТФ.

2. Расстройства функции печени, где в норме часть молочной кислоты ресинтезируется в глюкозу и гликоген. При поражении печени этот ресинтез нарушается. Развиваются гиперлакцидемия и ацидоз.

3. Гиповитаминоз В1. Нарушается окисление пировиноградной кислоты, так как витамин B1 входит в состав кофермента, участвующего в этом процессе. Пировиноградная кислота накапливается в избытке и частично переходит в молочную кислоту, содержание которой также возрастает. При нарушении окисления пировиноградной кислоты снижается синтез ацетилхолина и нарушается передача нервных импульсов. Уменьшается образование из пировиноградной кислоты ацетилкоэнзима А. Пировиноградная кислота является фармакологическим ядом для нервных окончаний. При увеличении ее концентрации в 2-3 раза возникают нарушения чувствительности, невриты, параличи и др.

При гиповитаминозе B1 нарушается также и пентозофосфатный путь обмена углеводов, в частности образование рибозы.

4. Гипергликемия

Гипергликемия - повышение уровня сахара крови выше нормального. В зависимости от этиологических факторов различают следующие виды гипергликемий:

1. Алиментарная гипергликемия. Развивается при приеме больших количеств сахара. Этот вид гипергликемии используют для оценки состояния углеводного обмена (так называемая сахарная нагрузка). У здорового человека после одномоментного приема 100-150 г сахара содержание глюкозы в крови нарастает, достигая максимума - 1,5-1,7 г/л (150-170 мг%) через 30-45 мин. Затем уровень сахара крови начинает падать и через 2 ч снижается до нормы (0,8-1,2 г/л), а через 3 ч оказывается даже несколько сниженным.

2. Эмоциональная гипергликемия. При резком преобладании в коре головного мозга раздражительного процесса над тормозным возбуждение иррадиирует на нижележащие отделы центральной нервной системы. Поток импульсов по симпатическим путям, направляясь к печени, усиливает в ней распад гликогена и тормозит переход углеводов в жир. Одновременно возбуждение воздействует через гипоталамические центры и симпатическую нервную систему на надпочечники. Происходит выброс в кровь больших количеств адреналина, стимулирующего гликогенолиз.

3. Гормональные гипергликемии. Возникают при нарушении функции эндокринных желез, гормоны которых участвуют в регуляции углеводного обмена. Например, гипергликемия развивается при повышении продукции глюкагона - гормона α-клеток островков Лангерганса поджелудочной железы, который, активируя фосфорилазу печени, способствует гликогенолизу. Сходным действием обладает адреналин. К гипергликемии ведет избыток глюкокортикоидов (стимулируют глюконеогенез и тормозят гексокиназу) и соматотропного гормона гипофиза (тормозит синтез гликогена, способствует образованию ингибитора гексокиназы и активирует инсулиназу печени).

4. Гипергликемии при некоторых видах наркоза. При эфирном и морфинном наркозах происходит возбуждение симпатических центров и выход адреналина из надпочечников; при хлороформном наркозе к этому присоединяется нарушение гликогенообразовательной функции печени.

5. Гипергликемия при недостаточности инсулина является наиболее стойкой и выраженной. Ее воспроизводят в эксперименте путем удаления поджелудочной железы. Однако при этом дефицит инсулина сочетается с тяжелым расстройством пищеварения. Поэтому более совершенной экспериментальной моделью инсулиновой недостаточности является недостаточность, вызванная введением аллоксана (C4H2N2O4), который блокирует SH-группы. В β-клетках островков Лангерганса поджелудочной железы, где запасы SH-групп невелики, быстро наступает их дефицит и инсулин становится неактивным.

Экспериментальную недостаточность инсулина можно вызвать дитизоном, блокирующим цинк в β-клетках островков Лангерганса, что ведет к нарушению образования гранул из молекул инсулина и его депонирования. Кроме того, в β-клетках образуется дитизонат цинка, который повреждает молекулы инсулина.

Недостаточность инсулина может быть панкреатической и внепанкреатической. Оба эти вида инсулиновой недостаточности могут вызвать сахарный диабет (diabetes mellitus).

6. Панкреатическая инсулиновая недостаточность

Этот тип недостаточности развивается при разрушении поджелудочной железы опухолями, туберкулезным или сифилитическим процессом, при острых воспалительно-дегенеративных процессах в поджелудочной железе - панкреатитах. В этих случаях нарушаются все функции поджелудочной железы, в том числе и способность вырабатывать инсулин. После панкреатита в 16-18% случаев развивается инсулиновая недостаточность в связи с избыточным разрастанием соединительной ткани, которая как бы «замуровывает» β-клетки, что нарушает их снабжение кислородом.

К инсулиновой недостаточности ведет местная гипоксия островков Лангерганса (атеросклероз, спазм сосудов), где в норме очень интенсивное кровообращение. При этом дисульфидные группы в инсулине переходят в сульфгидрильные и он становится неактивным (не оказывает гипогликемического эффекта).
Предполагают, что причиной инсулиновой недостаточности может послужить образование в организме при нарушении пуринового обмена аллоксана, близкого по структуре к мочевой кислоте (уреид мезоксалевой кислоты).

Инсулярный аппарат может истощаться после предварительного повышения функции, например при излишнем употреблении в пищу легкоусвояемых углеводов, вызывающих гипергликемию, при переедании.
В развитии панкреатической инсулиновой недостаточности важная роль принадлежит исходной наследственной неполноценности инсулярного аппарата.

7. Внепанкреатическая инсулиновая недостаточность

Этот тип недостаточности может развиться при повышенной активности инсулиназы - фермента, расщепляющего инсулин и образующегося в печени к началу полового созревания.

К недостаточности инсулина могут привести хронические воспалительные процессы, при которых в кровь поступает много протеолитических ферментов, разрушающих инсулин.

Избыток гидрокортизона, тормозящего гексокиназу, снижает действие инсулина. Активность инсулина снижается при избытке в крови неэстерифицированных жирных кислот, которые оказывают на него непосредственное тормозящее влияние.

Причиной недостаточности инсулина может послужить чрезмерно прочная его связь с переносящими белками в крови. Инсулин, связанный с белком, не активен в печени и мышцах, но оказывает обычно действие на жировую ткань (так называемый диабет тучных).

В ряде случаев при сахарном диабете содержание инсулина в крови нормально или даже повышено. Предполагают, что диабет при этом обусловлен присутствием в крови антагониста инсулина, однако природа этого антагониста не установлена.

Образование в организме антител против инсулина ведет к разрушению этого гормона.

Нарушения углеводного обмена при недостаточности инсулина.

Углеводный обмен при сахарном диабете характеризуется следующими особенностями:

1. резко снижен синтез глюкокиназы, которая при диабете почти полностью исчезает из печени, что ведет к уменьшению образования глюкозо-6-фосфата в клетках печени. Этот момент наряду со сниженным синтезом гликогенсинтетазы обусловливает резкое замедление синтеза гликогена. Происходит обеднение печени гликогеном. При недостатке глюкозо-6-фосфата тормозится пентозофосфатный цикл;
2. активность глюкозо-6-фосфатазы резко возрастает, поэтому глюкозо-6-фосфат дефосфорилируется и поступает в кровь в виде глюкозы;
3. тормозится переход глюкозы в жир;
4. понижается прохождение глюкозы через клеточные мембраны, она плохо усваивается тканями;
5. резко ускоряется глюконеогенез - образование глюкозы из лактата, пирувата, аминокислот жирных кислот и других продуктов неуглеводного обмена. Ускорение глюконеогенеза при сахарном диабете обусловлено отсутствием подавляющего влияния (супрессии) инсулина на ферменты, обеспечивающие глюконеогенез в клетках печени и почек: пируваткарбоксилазу, глюкозо-6-фосфатазу и др.

Таким образом, при сахарном диабете имеют место избыточная продукция и недостаточное использование глюкозы тканями, вследствие чего возникает гипергликемия. Содержание сахара в крови при тяжелых формах может достигать 4-5 г/л (400-500 мг%) и выше. При этом резко возрастает осмотическое давление крови, что ведет к обезвоживанию клеток организма. В связи с обезвоживанием глубоко нарушаются функции центральной нервной системы (гиперосмолярная кома).

Сахарная кривая при диабете по сравнению с таковой у здоровых значительно растянута во времени. Значение гипергликемии в патогенезе заболевания двояко. Она играет адаптивную роль, так как при ней тормозится распад гликогена и частично усиливается его синтез. При гипергликемии глюкоза лучше проникает в ткани и они не испытывают резкого недостатка углеводов. Гипергликемия имеет и отрицательное значение. При ней повышается концентрация глюко- и мукопротеидов, которые легко выпадают в соединительной ткани, способствуя образованию гиалина. Поэтому для сахарного диабета характерно раннее поражение сосудов атеросклерозом. Атеросклеротический процесс захватывает коронарные сосуды сердца (коронарная недостаточность), сосуды почек (гломерулонефриты) и др.
В пожилом возрасте сахарный диабет может сочетаться с гипертонической болезнью.

При повышении содержания сахара в крови до 1,6-2,0 г/л (160-200 мг%) и выше он начинает переходить в окончательную мочу - возникает глюкозурия.

Глюкозурия. В норме глюкоза содержится в провизорной моче. В канальцах она реабсорбируется в виде глюкозофосфата, для образования которого необходима гексокиназа, и после дефосфорилирования поступает в кровь. Таким образом, в окончательной моче сахара в нормальных условиях не содержится. При диабете процессы фосфорилирования и дефосфорилирования глюкозы в канальцах почек не справляются с избытком глюкозы в первичной моче. Развивается глюкозурия. При тяжелых формах сахарного диабета содержание сахара в моче может достигать 8-10%. Осмотическое давление мочи повышено; в связи с этим в окончательную мочу переходит много воды. Суточный диурез возрастает до 5-10 л и более (полиурия). Развивается обезвоживание организма и как следствие его - усиленная жажда (полидипсия).

К каким врачам обращаться, если возникает нарушение углеводного обмена

Эндокринолог

Углеводы, поступающие с пищей в виде полисахаридов, гидролизуются в желудочно-кишечном тракте под влиянием ферментов (амилаза, мальтаза и лактаза) до гексоз (глюкоза, фруктоза, галактоза) и пентоз. Последние, подвергаясь фосфорилированию в присутствии фермента гексокиназы и АТФ, поступают в кишечный эпителий, где под влиянием фермента глюзо-6-фосфатазы снова превращаются в моносахара и направляются в портальную систему. Основная масса углеводов всасывается после предварительного фосфорилирования. Такой механизм обеспечивает наиболее быстрое усвоение углеводов. Небольшая часть моносахаридов всасывается по принципу диффузии, не подвергаясь фосфорилированию.

Нарушение расщепления углеводов отмечено при развитии воcпаления, опухолей слизистой рта и желудочно-кишечного тракту печени, поджелудочной железы, при обших процессах типа перегревания, лихорадки, обезвоживания, шока, после резекции кишечника, а также при наследственных энзимопатиях.

Нарушение всасывания может происходить как вследствие раcстройств расщепления полисахаридов, так и в результате нарушения фосфорилировання углеводов. Последнее наблюдается при дефиците инсулина, глюкокортикоидов, отравлениях флоридзином и монойодацетатом.

При нарушении расщепления и всасывания углеводов возникае углеводное голодание, следствием чего может явиться активация компенсаторных реакций в виде гликогенолиза и липолиза как результат усиления эффектов контринсулярных гормонов. Поступление нерасшепленных углеводов в толстый кишечник приводит к усилению брожения. Основные причины, механизмы нарушения углеводного обмена и его последствия для организма представлены н схеме 4.

Схема 4. Нарушения расщепления и всасывания углеводов
Причины Гидролиз Всасывание
Воспаление, опухоли слизистой рта, поджелудочной железы, кишечника; лихорадка, перегревание, обезвоживание, резекция кишечника; наследственные энзимопатии; усиление перистальтики кишечника Нарушения нервной и гуморальной регуляции желудочно-кишечного тракта (усиление перистальтики, стресс, дефицит инсулина, глкжокортикоидов, тироксина); отравления флоридзином, монойодацетатом
Механизмы Дефицит гидролитических ферментов (амилазы, мальтазы, лактазы) Нарушения расщепления и фосфорилирования углеводов
Изменения в организме Последствия - углеводное голодание -> гипогликемия -> снижение синтеза гликогена в печени и мышцах, исхудание вследствие мобилизации жира из жировых депо. При нарушении расщепления - усиление брожения в толстом кишечнике.

Компенсация - активация гликогенолиза, липолиза и глюконеогенеза.

Содержание углеводов в портальной систе ме подвержено значительным колебаниям и во многом обусловлен приемом пищи. В крови углеводы представлены преимущественн глюкозой (60-100 мг%; или 3,33-5,55 ммоль/л), фруктозой и галактозой. В целом в крови взрослого человека содержится 80-120 мг% (4,44-6,66 ммоль/л) углеводов, у новорожденных детей - 130-50 мг%, грудных -70-90 мг%. Уровень сахара в крови регулируется инсулином и контринсулярными гормонами. Ниже представлены основные биологические эффекты инсулина и контринсулярных гормонов.

  • Инсулин повышает проницаемость мембран клеток, активирует гексокиназу и тормозит глюкозо-6-фосфатазу. Активирует гликогенез в печени и мышцах, липогенез. Тормозит глюконеогенез в печени. Благодаря указанным эффектам уровень глюкозы в крови снижается.
  • Глюкагон активирует фосфорилазу печени и распад гликогена до свободной глюкозы.
  • Адреналин действует аналогично глюкагону и вызывает гликогенолиз в мышцах, где из-за отсутствия глюкозо-6-фосфатазы глюкозо-6-фосфат превращается в пировиноградную и молочную кислоты.
  • Соматотропин активирует инсулиназу печени.
  • Глюкокортикоиды активируют глюкозо-6-фосфатазу и тормозят эффекты гексокиназы. Активируют в печени глюконеогенез из аминокислот и лактата. Обладают пермиссивным эффектом для катехоламинов, которые вызывают гликогенолиз в печени и мышцах. Стимулируют тканевые катепсины и распад белка в мышцах, лимфоидных узлах и т. д.
  • Тироксин активирует фосфррилазу и инсулиназу печени. Стимулирует тканевые катепсины и распад белка.

Изменения уровня углеводов в крови проявляются в виде гипер- и гипогликемии.

Увеличение уровня сахара в крови свыше 120 мг% (6,66 ммоль/л) (или глюкозы свыше 100 мг%) называется гипергликемией. В условиях патологии она развивается при сахарном диабете, когда нарушается образование инсулина или чувствительность клеток к нему (инсулинрезистентные формы диабета), что одновременнс сочетается с активацией эффектов контринсулярных гормонов. Возможно развитие гипергликемии при изолированном увеличении одного или нескольких контринсулярных гормонов (стресс, опухоли альфа-клеток поджелудочной железы, эозинофильных клеток гипофиза, образующих соматотропин, при синдроме и болезни Иценко-Кушинга, гипертиреозе). Но и в этом случае гипергликемия вызывает напряжение, перенапряжение и истощение инсулярного аппарата поджелудочной железы. В основа механизма формирования гипергликемии лежит нарушение гормональной регуляции уровня углеводов в крови с преобладанием эффектов контринсулярных ropмонов.

Причины, механизмы и последствия гипергликемии представлены на схеме 5.

Схема 5. Гипергликемия
Причины Дефицит инсулина и повышение образования контринсулярных гормонов, гиперпродукция отдельных контринсулярных гормонов (гипертиреоз, болезнь и синдром Иценко-Кушинга, стресс, акромегалия и гигантизм), прием избыточного количества пищи
Механизмы Снижение проницаемости клеточных мембран для глюкозы, активация глюкозо-6-фосфатазы, торможение гексокиназы, гликогенолиз, глюконеогенез
Последствия При гипергликемии свыше 9,44-9,99 ммоль/л (170-180 мг%) глюкозурия. Гипергликемия при сахарном диабете сочетается с расстройствами других видов обмена (белкового, липидного, минерального)

Углеводы крови являются пороговыми веществами, т. е. при увеличении их в крови свыше 9.435-9.99 ммоль/л (170-180 мг%) реабсорбция в почках происходит не полностью, и глюкоза появляется в окончательной моче. Это явление получило название глюкозурией. Выделение глюкозы с мочой наблюдается и при почечном диабете, при котором активность гексокиназы в почках снижена. Фосфорилирование глюкозы нарушено, и она полностью не реабсорбируётся. Поэтому при почечном диабете уровень сахара в крови может оставаться нормальным или сниженным, но в результате нарушения реабсорбции глюкоза выделяется с мочой.

Гипогликемия характеризуется уменьшением уровня сахара в крови ниже 70 мг% (3,885 ммоль/ч). Это обусловлено преобладанием эффектов инсулина и чаше всего увеличением утилизации глюкозы (опухоль поджелудочной железы, передозировка инсулина, тяжелая мышечная работа), углеводным голоданием, дефицитом контринсулярных гормонов (гипотиреоз, бронзовая болезнь), увеличением выделения глюкозы с мочой, например, при почечном диабете, наследственной энзимопатии, когда в результате дефицита глюкозо-6-фосфатазы не происходит мобилизация гликогена из печени.

Важным механизмом развития гипогликемии является недостаточность эффектов контринсулярных гормонов. Пока процессы гликогенолиза, глюконеогенеза, инактивации инсулиназы печени достаточны, гипогликемия не развивается.

Снижение уровня глюкозы, являющейся важнейшим энергетическим субстратом, ведёт к уменьшению образования макроэргов. Это проявляется нарушением функций многих органов, но особенно нервной, мышечной и сердечно-сосудистой систем. Вот почему при снижении содержания углеводов в крови ниже 70 мг% (3.885 ммоль/л) наблюдаются повышенная возбудимость, слабость, тахикардия, а позже и брадикардия. При снижении уровня углеводов до 50-55 мг% (2.775-3.05 ммоль/л) появляются судороги, развивается гипогликемическая кома. Полное прекращение поступления глюкозы в мозг в течение 5-7 минут ведет к гибели нервных клеток. Причины, механизмы и последствия гипогликемии представлены на схеме 6.

Схема 6. Гипогликемия
Причины Углеводное голодание, увеличение количества инсулина, выделение глюкозы с мочой при почечном диабете, дефицит контринсулярных гормонов (гипотиреоз, бронзовая болезнь), гликогенозы, тяжелая мышечная работа
Механизмы Недостаточное поступление в кровь глюкозы, недостаточность эффектов контринсулярных гормонов
Последствия Нарушение функций органов и систем организма, особенно нервной, мышечной и сердечно-сосудистой систем, что проявляется тахикардией, мышечной слабостью, повышенной возбудимостью. При снижении углеводов до 50-55 мг% (2,78-3,05 ммоль/л) наблюдаются судороги и развитие гипогликемической комы

Нарушения межуточного обмена углеводов проявляются в виде изменений гликогенеза, гликолиза, гликогенолиза, глкжонеогенеза. Известно, что углеводы являются важнейшим энергетическим субстратом и служат источником энергии практическн во всех клеточных элементах. Однако наиболее интенсивный межуточный обмен углеводов происходит в печени, поперечно-полосатой мускулатуре и мозге. Очень важное значение в регуляции межуточного обмена принадлежит нейроэндокринным влияниям, особенно эффектам инсулина и контринсулярных гормонов. Так, в головном мозге глюкоза преимущественно окисляется и только в небольшом количестве превращается в молочную кислоту. Глюкоз является единственным источником энергии для нервной ткани, и поэтому недостаточное поступление или нарушение окисления ее вследствие гипоксии ведут к дефициту АТФ и расстройствам функции нервной системы.

В поперечно-полосатой мускулатуре расстройства межуточного обмена могут быть обусловлены гипоксией, гипогликемией, дефицитом инсулина. Эти состояния сопровождаются угнетением синтеза гликогена в мышцах. При гипоксии, а также при избыточной продукции глюкагона, глюкокортикоидов, катехоламинов, при тяжелой мышечной работе усиливается распад гликогена (гликогенолиз) в мышцах, но из-за отсутствия в них глюкозо-6-фосфатазы превращение гликогена и поступающей в мышцы глюкозы осуществляется путем усиления гликолиза с образованием пировиноградной и молочной кислот. Последняя в самой мышце частично ресинтезируется в глюкозу и гликоген и, кроме того, поступая в печень, также используется для образования глюкозы. Поэтому в условиях поражения печени и при усилении гликолиза в мышцах процесс ресинтеза глюкозы из молочной кислоты нарушается, что способствует формированию метаболического ацидоза.

Наиболее важное значение в межуточном обмене углеводов имеет печень. Именно в этом органе интенсивно осуществляются гликогенез, гликогенолиз, глюконеогенез, образование продуктов, принимающих участие в обезвреживании токсических веществ (например, глюкуроновой кислоты). Поэтому расстройства кровообращения и гипоксия, токсико-инфекционные процессы в печени, цирроз нарушают образование гликогена и глюкуроновой кислоты, усиливают превращение глюкозы по гликолитическому пути с увеличением количества пировиноградной и молочной кислот. Тормозится ресинтез глюкозы из молочной кислоты в цикле Кори. Нарушается использование глюкозы в пентозо-фосфатном цикле и, следовательно, синтез нуклеиновых кислот.

При недостаточности щитовидной железы, надпочечников, истощении симпато-адреналовой системы нарушается как образование, так и, особенно, мобилизация глюкозы из гликогена печени. Торможение мобилизации гликогена в печени наблюдается также при наследственной энзимопатии, вызванной генетическим нарушением синтеза фермента глюкозо-6-фосфатазы. В этом случае образование гликогена не нарушено, но в результате блокады гликогенолиза гликоген накапливается в печени, обусловливая формирование наследственного гликогеноза.

При избытке глюкагона, катехоламинов, тироксина усиливается гликогенолиз в печени. В результате этого содержание гликогена в печени уменьшается и одновременно увеличивается количество глюкозы в крови.

Увеличение образования глюкокортикоидов (синдром и болезнь Иценко - Кушинга) или длительное введение их по жизненным показаниям больному активируют глюконеогенез в печени из аминокислот и жирных кислот. Ибо глюкокортикоиды стимулируют катаболизм белка в тканях и, как и другие контринсулярные гормоны, липолиз в жировых депо, что способствует избыточному поступлению субстратов глюконеогенеза (аминокислот и жирных кислот) в печень.

Витамин B 1 является кофактором ферментов, участвующих в превращении пировиноградной кислоты в ацетил-КоА и ацетилхолин. Поэтому при дефиците этого витамина нарушается синаптическая передача, что ведет к развитию парезов и параличей.

Таким образом, последствия расстройств межуточного обмена углеводов достаточно серьезны. Так, при гипоксии, токсико-инфекционных поражениях печени может изменяться кислотно-щелочное равновесие в сторону метаболического ацидоза. Преобладание гликолитического превращения глюкозы ведет к дефициту АТФ и нарушению синтетических процессов в организме, в том числе синтеза нуклеиновых кислот. При дефиците витамина B 1 нарушается превращение пировиноградной кислоты в ацетилхолин и наблюдается развитие парезов и параличей.

Избыточное образование контринсулярных гормонов обеспечивает торможение гликогенеза, активацию гликогенолиза, липолиза в жировых депо, а увеличение таких контринсулярных гормонов, как глюкокортикоиды и тироксин, кроме того, вызывает активацию протеолиза в тканях и глюконеогенеза в печени. На схеме 7 предcтавлены основные причины, механизмы и последствия нарушений межуточного обмена углеводов.

Схема 7. Нарушение межуточного обмена углеводов
Причины Расстройства кровообращения, гипоксии, токсикоинфекционные поражения печени, изменения уровня гормонов (инсулина, глюкагона, катехоламинов, соматотропина, глюкокортикоидов, тироксина), дефицит витамина B 1 , наследственные энзимопатии, тяжелая мышечная работа
Механизмы Активация гликолиза, нарушения гликогенеза, гликогенолиза, глюконеогенеза. Торможение окисления в печени и других органах, дефицит ферментов углеводного обмена
Последствия Ацидоз, дефицит АТФ, нарушение синтеза рибоз. Возможны парезы, параличи. Нарушения функций органов и систем организма

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Карагандинский Государственный Медицинский Университет

Кафедра Патологической Физиологии

Реферат

На тему: «Нарушение углеводного обмена »

Выполнил: студент группы 2-095 ОМ

Недоросткова Е.В.

Проверил: преподаватель

Мохир Ю.М.

Караганда 2015

Введение

Успехи медицины последних десятилетий обусловили резкое сокращение инфекционной заболеваемости. Однако, общая заболеваемость населения остается высокой за счет роста так навиваемых болезней цивилизации. Среди разнообразных причин роста числа этих заболеваний на первое место выходят различные нарушения обмена веществ.

Многие патологические процессы и болезни неизбежно отражаются на ходе метаболических реакций и сами могут стать причиной и пусковым механизмом нарушений кислотно-основного, водно-электролитного и углеводного гомеостаза в организме. Поскольку между различными метаболическими реакциями и путями существуют тесные взаимные связи, то изменения обменных процессов редко носят изолированный характер и чаще представляют собой комплекс, взаимообусловленных и взаимосвязанных патофизиологических процессов. В качестве типичного примера можно привести сахарный диабет, при котором нарушается не только метаболизм углеводов, но и метаболизм липидов, белков, нарушается кислотно-основное и водно-электролитное равновесие.

Из всех нарушений обмена веществ раньше всех страдает углеводный, как наиболее значимый в энергетическом обеспечении организма и наиболее лабильный по отношению к различным внешним и. внутренним факторам.

Нарушения углеводного обмена могут проявляться на различных уровнях биологической организации - от молекулярного до организменного. Они могут возникать в результате нарушения нервно-гормональной регуляции, генетической информации или непосредственного действия патогенных факторов.

В основа расстройств углеводного обмена прежде всего лежат условия жизни современного человека: перенапряжение нервной системы, гиподинамия, несбалансированное питание и другие, что может обусловливать развитие многих патологических процессов и заболеваний (например, экссудативного диатеза, кариеса зубов, ожирения, поражения сосудов и др.). Наиболее частой и тяжелой формой патологии углеводного обмена является сахарный диабет, которым болеют около 4% населения. По смертности сахарный диабет выходит на 3-е место, а по инвалидности, в частности по слепоте, на первое место.

Знание этиологии и механизмов нарушений углеводного обмена является необходимым условием глубокого понимания клинических проявлений, диагностики и патогенетической терапии заболеваний обмена веществ и эндокринной системы.

1. Общий патоген ез нарушений углеводного обмена

Углеводы в составе тела человека присутствуют в значительно меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды. В организме углеводы выполняют разнообразные функции, важнейшими из которых является энергетическая (главный источник энергии для клеток) и структурная (обязательный компонент большинства внутриклеточных структур). Кроме того, углеводы используются для синтеза нуклеиновых кислот (рибоза, дезоксирибоза), а также образуют соединения с белком (гликопротеиды, протеогликаны), липидами (гликолипиды) и другими веществами (гетеромоносахариды), являясь компонентами многих ферментов и регуляторных систем, обеспечивающих многочисленные специфические функции.

Химически углеводы представляют собой альдегиды и кетоны многоатомных спиртов. Моносахариды соединяются посредством гликозидной связи, образуя дисахариды, олигосахариды (от 3 до 6 моносахаридных остатков) и полисахариды (гликоген, крахмал). В организме наиболее распространены пентозы (входят в состав нуклеиновых кислот и многих коферментов, в частности НАДФ) и гексозы (глюкоза, фруктоза, галактоза). Для энергетического обмена наибольшую значимость имеет глюкоза. Во-первых, она является единственным источником энергии для ЦНС, в которой нет энергетических запасов и она не использует другие источники энергии, напр., белки и жиры (за исключением кетоновых тел в условиях голодания). Во-вторых, организм создает резерв глюкозы в виде гликогена, который быстро расщепляется и поставляет глюкозу в кровь. В-третьих, для полного окисления 1 молекулы глюкозы (до СО 2 и Н 2 О - легко удаляемых из организма) требуется меньше кислорода, чем для окисления жирной кислоты, а выход макроэргов - значительный: 38 молекул АТФ.

В обмене углеводов принято выделять следующие этапы:

переваривание и всасывание углеводов в желудочно-кишечном тракте;

процессы синтеза и расщепления гликогена;

промежуточный обмен углеводов и их утилизация в тканях.

Причинные факторы, нарушающие метаболизм углеводов, могут проявлять себя на каждом из указанных этапов углеводного обмена.

Схема регуляции углеводного обмена

2. Нарушение переваривания и всасывания углеводов в пищеварительном тракте

Пищевые гликоген и крахмал составляют 60% поступающих углеводов. Остальная доля потребляемых углеводов приходится на природные дисахариды (сахароза, мальтоза, лактоза) и в меньшей степени - моносахариды (глюкоза, фруктоза). Различные причины наследственного или приобретенного характера могут нарушать расщепление углеводов и всасывание глюкозы. Следствием этого со стороны желудочно-кишечного тракта являются метеоризм и осмотическая диарея, а со стороны крови, особенно натощак, - гипогликемия. В этих условиях глюконеогенез предохраняет организм от слишком сильного падения уровня глюкозы в крови. Более подробно этот вид нарушения углеводного обмена рассматривается в курсе частной патофизиологии.

Нарушение синтеза и расщепления гликогена, гликогенозы.

В клетках поступающая из крови глюкоза фосфолирируется в гексокина зной реакции, превращаясь в глюкозо-6-фосфат (Гл-6-Ф). Из Гл-6-Ф в результате сочетанного действия гликогенсинтетазы и «ветвящего» фермента синтезируется гликоген - полимер, в молекуле которого может содержаться до миллиона моносахаридов. При этом происходит своего рода кристаллизация гликогена, в результате чего он не обладает осмотическим эффектом. Такая форма пригодна для хранения глюкозы в клетке (если бы такое же количество молекул глюкозы было просто растворено в цитоплазме клетки, то из-за осмотических сил клетка была бы неизбежно разрушена).

Гликоген содержится в клетках всех тканей. Наиболее много его в печени и мышцах, тогда как в клетках нервной системы он присутствует в минимальных количествах. Скорость распада гликогена определяется потребностями организма. В обычных условиях распад гликогена обеспечивает суточное поступление в кровоток от 1,9 до 2,1 мг глюкозы на каждый килограмм массы тела. Главным поставщиком образующейся из гликогена глюкозы является печень, так как ее клетки в отличие от мышечных способны гидролизовать глюкозо-6-фосфат до глюкозы.

Усиление распада гликогена. В мышцах интенсивный гликогенолиз происходит при выраженной физической нагрузке. Часть глюкозы метаболизируется до СО 2 и Н 2 О с образованием максимального количества АТФ, а часть - до молочной кислоты, которая поступает в кровь, в печень и может там ресинтезироваться в глюкозу. В печени гликогенолиз активируется в ответ на снижение сывороточной концентрации глюкозы или как компонент стрессовой реакции. Основными гормонами, активирующими гликогенолиз, являются глюкагон, адреналин и кортизол. В меньшей степени активации гликогенолиза способствуют состояния, сопровождающиеся гиперпродукцией СТГ и гормонов щитовидной железы. Активация симпатической нервной системы также способствует гликогенолизу. Следствием активации гликогенолиза является нарастание уровня глюкозы в крови.

Ослабление синтеза гликогена отмечается при гипоксии, т.к. при ней нарушается образование АТФ, необходимое для образования гликогена. Поскольку основным местом синтеза и накопления гликогена является печень, ее тяжелые поражения, сопровождаемые угнетением гликогенобразовательной функции, приводят к выраженному уменьшению общих запасов гликогена.

Недостаточное содержание гликогена в его основном депо, т.е. в печени, препятствует устранению гипогликемии при недостаточном поступлении глюкозы с пищей (голодание, патология ЖКТ) или при ее активном расходовании (мышечные нагрузки, стресс). В условиях дефицита экзогенно поступающей глюкозы и уменьшения ее эндогенных запасов, депонированных в виде гликогена, энергетический обмен начинает обеспечиваться за счет белков и жиров. Это сопровождается потерей пластического материала, а также накоплением кетоновых тел, провоцирующих ацидоз и интоксикацию.

Избыточное накопление гликогена за счет ослабления его утилизации наблюдается при гликогенозах.

Гликогенозы представляют собой группу редких наследственных заболеваний, при которых из-за дефектов ферментов либо тормозится распад гликогена, имеющего нормальное строение, либо изначально образуется гликоген с измененной структурой, препятствующей в последующем его расщеплению. В том и другом случае в органах депонируется избыточный запас гликогена. При этом на фоне значительных резервов эндогенной глюкозы, депонированной в гликогене, из-за невозможности его использования у больных развивается выраженная гипогликемия. Всего на сегодняшний день выделено 12 типов гликогенозов. В качестве примера рассмотрим один из 6 наиболее часто встречающихся гликогенозов.

Наиболее распространенные формы гликогенозов

Проявления гликогенозов:

Клинические:

отложения гликогена в разных тканях и органах (печень, почки, скелетная мускулатура, миокард) с нарушением их функций;

мышечная слабость;

отставание в развитии

Лабораторные:

гипогликемия, повышенная чувствительность к инсулину;

тенденция к лактат- и кетоацидозу;

при пробе с глюкагоном или адреналином отмечается не гипергликемия (нормальная реакция за счет активации гликогенолиза), а повышение в крови лактата и пирувата.

Гликогеноз I типа (болезнь Гирке) возникает при врожденном дефиците в печени и почках фермента глюкозо-6-фосфатазы. Данный фермент отщепляет свободную глюкозу от Гл-6-Ф, что делает возможным ее трансмембранный переход из клеток печени и почек в кровь. При недостаточности глюкозо-6-фосфатазы в клетках печени и почек накапливается гликоген, имеющий нормальную структуру. Развивается гипогликемия, повышается чувствительность к инсулину. Увеличивается содержание кетоновых тел, что является следствием активации жирового обмена и окисления липидов при гипогликемии. Таким образом, развивается метаболический лактат- и кетоацидоз. Патологические симптомы появляются уже на первом году жизни ребенка: печень и почки увеличены в размерах, наблюдается задержка роста, в результате гипогликемии могут возникать судороги. Больные дети, как правило, рано умирают от интеркуррентных

(дополнительно развивающихся) заболеваний и ацидотической комы. Болезнь наследуется по аутосомно-рецессивному типу.

3. Нарушения промежуточного обмена углеводов

Под промежуточным обменом углеводов понимаются процессы их превращений в тканях, тесно связанные с белковым и липидным обменами и направленные как на создание условий для поддержания адекватного энергетического обмена, так и на образование целого ряда необходимых организму соединений. К последним можно отнести пентозофосфаты (используются для синтеза нуклеотидов и НАДФН), а также многочисленные гетерополисахариды, выполняющие в организме функции нейромедиаторов (ацетилхолин), антиоксидантов (глютатион), биологически активных веществ (гепарин и другие протеогликаны), секреторных компонентов (мукополисахариды) и др.

В качестве примеров проявлений нарушений промежуточного обмена углеводов можно назвать следующие процессы и состояния:

Усиление гликолиза в условиях гипоксии;

Угнетение образования ацетил-КоА;

Аномальные изменения (избыточное повышение и понижение) активности глюконеогенеза;

Дефекты пентозофосфатного пути утилизации углеводов.

При гипоксических состояниях (на фоне общей недостаточности кровообращения, дыхания, при тяжелых анемиях и др.) за счет преобладания анаэробного дыхания над аэробным происходит избыточное накопление молочной и пировиноградной кислот, что провоцирует тканевой ацидоз. Избыточная мобилизация гликогена как источника глюкозы в условиях ее малоэффективной анаэробной утилизации приводит при хронической гипоксии к истощению запасов гликогена, что еще больше способствует гипогликемии.

Блокирование образования ацетил-КоА приводит к нарушению взаимопревращений углеводов, жиров и белков, поскольку все такие взаимопревращения должны проходить через промежуточный этап ацетил-КоА. Последний образуется в митохондриях в результате окислительного декарбоксилирования пировиноградной кислоты. Гипоксия, интоксикация мышьяком, некоторые гиповитаминозы (например, недостаток витамина В 1 - тиамина) повреждают пируватдегидрогеназную систему и уменьшают синтез ацетил-КоА. Из-за его универсальной роли это отражается на множестве клеток, тканей и органов - от эритроцитов до ЦНС.

Отклонения активности глюконеогенеза всегда заметно влияют на уровень глюкозы в организме. Этот процессе является дополнительным источником эндогенной глюкозы благодаря ее синтезу из гликогенных аминокислот (аланина, глицина, серина и др.), молочной и пировиноградной кислот, глицерола и ряда других соединений в клетках печени и почек.

Глюконеогенез в основном активируется (усиливается) в тех случаях, когда утилизации гликогена недостаточна для поддержания в крови уровня глюкозы, способного удовлетворить потребности организма. Подобные случая наблюдаются в периоды длительного голодания, при продолжительной и тяжелой физической работе.

Основными гормональными стимуляторами глюконеогенеза являются глюкокортикоиды и глюкагон. Активации глюконеогенеза способствуют также адреналин, СТГ и тиреоидные гормоны, поскольку они усиливают липолиз, т.е. увеличивают уровень жировых субстратов, превращающихся в углеводы. Повышение продукции этих гормонов сопровождаются усилением глюконеогенеза и, как следствие, гипергликемией. Обратной стороной усиленного глюконеогенеза является катаболизм жиров и белков (в лимфоидной ткани, коже, мышцах), поставляющий субстраты для синтеза глюкозы.

Торможение глюконеогенеза с развитием гипогликемии отмечается при дефиците указанных выше гормонов, при избыточном образовании инсулина (при инсулиноме), а также при тяжелых поражениях печени.

Нарушения пентозного цикла окисления глюкозы могут быть приобретенными (при дефиците витамина В 1, когда нарушается образование рибозы) или врожденными. Среди врожденных дефектов пентозо-фосфатного шунта наиболее распространен дефицит или аномалии глюкозо-6-фосфатдегидрогеназы. При этом не обеспечивается необходимое восстановление глютатиона, являющегося важнейшим фактором антиоксидантной защиты. В мембране эритроцитов дефицит глютатиона сопровождается активацией перекисного окисления липидов, что влечет за собой повышение проницаемости мембран и гемолиз (возникает гемолитическая анемия, относящаяся к наследственным ферментопатиям).

Схема, показывающая происхождение сахара крови и поддержание его нормального уровня

4. Сахарный диабет

Сахарный диабет (СД) - это группа обменных (метаболических) заболеваний, характеризующихся развитием стойкой гипергликемии вследствие абсолютной или относительной недостаточности инсулина. Недостаток инсулина и длительная гипергликемия обусловливают отклонения всех видов обменных процессов с развитием острых и хронических (поздних) специфических осложнений СД.

При абсолютной недостаточности инсулина концентрация в крови этого гормона меньше нормы.

При относительной недостаточности инсулина его концентрация в крови может быть не только нормальной, но даже и повышенной, а ослабление эффектов инсулина связывается с падением чувствительности к нему (развитием инсулинорезистентности) со стороны инсулинзависимых тканей.

Классификация сахарн ого диабета

1. Диабет 1 типа (старое название: инсулин-зависимый сахарный диабет):

- аутоиммунный; - идиопатический.

2. Диабет 2 типа (старое название: инсулин-независимый сахарный диабет)

3. Другие специфические типы сахарного диабета:

А. Генетические дефекты в- клеточной функции:

а) юношеский MODY-диабет (в классификации 1999 г выделялось 3 типа, в 2005 г - 6 типов);

б) митохондриальная мутация ДНК;

в) другие генетические дефекты в-клеточной функции

Б. Генетическмем дефекты в действии инсулина (опосредованные наруш е нием функции рецепторов):

Резистентность к инсулину типа А; - лепречаунизм;

Синдром Рабсона-Менденхолла; - липоатрофический диабет

Другие варианты генетических аномалий инсулинорецепторов.

В. Болезни экзокринной части поджелудочной железы:

Хронический и рецидивирующий панкреатит, неоплазии, панкреоэктомия, кистозный фиброз, фиброкалькулезная панкреатопатия, гемохроматоз;

Г. Эндокринопатии:

Акромегалия, синдром Кушинга, глюкагонома, феохромоцитома, тиреотоксиеоз, соматостатинома, альдостерома и др.

Д. Диабет, индуцированный лекарствами и химикатами:

вакор, циклоспорин, пентамидин, никотиновая кислота, диазоксид, б-адреномиметики, в-адреноблокаторы, тиазидные диуретики, дилантин, б-интерферон, глюкокортикоиды, тиреоидные гормоны и др.

Е. Инфекции, вероятно участвующие в воспалительных процессах остро в ка поджелужочной железы и последующей деструкции в- клеток:

Врожденная краснуха, эпидемический паротит, инфекции, обусловленные цитомегаловирусами, вирусами коксаки и др.

Ж. Необычные формы иммуноопосредованного диабета:

Синдром обездвиженности, аутоантитела к рецепторам инсулина и др.

З. Генетические синдромы, иногда сочетающиеся с диабетом:

Синдромы Дауна, Кляйнфельтера, Шерешевского-Тернера, Вольфрама, Лоренса-Муна-Бидля, Прадера-Вилли, атаксия Фридрейха, хорея Гаттнгтона, миотоническая дистрофия, порфирия и др.

4. Гестационный сахарный диабет.

Патогенез инсулиновой недостаточности при сахарном диабете т и па 1.

Ведущим звеном патогенеза СД1 является деструкция в- клеток поджелудочной железы и, как следствие, абсолютная инсулиновая недостато ч ность. Клинически явный (манифестный) диабет возникает при разрушении 85-90% в-клеток. По механизму запуска гибели островковых клеток СД1 разделяется на идиопатический и аутоиммунный, который встречается в 10 раз чаще, чем первый.

Аутоиммунный СД1.

Аутоиммунная форма СД1 ассоциируется с внутренними (генетическими) и внешними (провоцирующими) факторами, которые в комбинации друг с другом «запускают» иммунные реакции повреждения островкового аппарата.

Вероятность возникновения аутоиммунного СД1 обусловлена определенными типами и сочетаниями генов HLA-системы, расположенной на 6-й хромосоме (диабетогенные аллели из групп HLA-DP, -DQ, -DR), а также другими диабетогенными генами, которых сегодня насчитывается уже не менее 20 и которые располагаются как на разных хромосомах, так и в разных участках одной и той же хромосомы. Например, согласно самым последним данным, в наследование предрасположенности к аутоиммунному СД1, помимо генов HLA-системы (хромосома 6), вовлечены ген инсулина (хромосома 11); ген, кодирующий тяжелую цепь IgG (хромосома 14); ген в-цепи Т-клеточного рецептора (хромосома 7); гены факторов некроза опухолей и других цитокинов (полихромосомная мозаичная локализация).

Этиология аутоиммунного СД1 окончательно не установлена. По современным представлениям, патогенетический механизм деструкции в-клеток при этой форме сахарного диабета можно представить как последовательность взаимодействия значительного количества внешних инициирующих факторов. У лиц, генетически предрасположенных к аутоиммунному СД1, активирование иммунокомпетентных клеток происходит на фоне повышенного образования различных цитокинов (интерлейкина-1, фактора некроза опухолей, г-интерферона и др), провоспалительных простагландинов, оксида азота и др, совокупное действие которых приводит к деструкции, апоптозу и уменьшению количества в-клеток и клинической картине диабета. Полагают, что среди инициирующих агентов наибольшую значимость для возникновения аутоиммунного СД1 имеют вирусы врожденной краснухи, эпидемического паротита, аденовирусы, вирусы Коксаки. В свою очередь, повреждающее действие вирусов проявляется в большей степени на фоне возможных предшествующих воздействий на мембрану в-клеток:

а) различных химических веществ в субпороговых концентрациях;

б) преходящих отклонений в клеточном метаболизме, спровоцированных различными экзогенными причинами (гипоксия, авитаминозы, недостаток микроэлементов, в частности Cu 2+ и Zn 2+ , и др.);

в) неадекватной гормональной регуляцией, в особенности в периодах полового созревания и адренархе (об этом косвенно свидетельствует возраст к началу заболевания СД1, который у большинства пациентов соответствует пубертату).

Инфильтрация островка лимфоцитами (Тх1, ЦТЛ СD8), NK-клетками и макрофагами (инсулит) постоянно встречается на самых ранних этапах развития аутоиммунного СД1 и указывает на участие в патологических процессах клеточного звена иммунитета.

Аутоантитела к различным антигенам в-клеток обнаруживаются в сыворотке у большинства больных аутоиммунным СД1 на доклинической стадии и почти у всех пациентов на ранних стадиях клинического периода. Роль аутоантител в патогенезе СД1 остается открытой. Одни исследователи полагают, что все типы этих аутоантител появляются вторично в ответ на разрушение в-клеток, т.е. не принимают участия в индукции или поддержании цитотоксических реакций. Другие авторы не исключают возможности разрушения в-клеток комплементсвязывающими аутоантителами.

Тем не менее, появление описываемых антител свидетельствует об идущем процессе разрушения в-клеток, причем независимо от наличия или отсутствия клинических признаков СД. Поэтому выявление антител к островковым клеткам позволяет диагностировать аутоиммунный СД1 уже на латентной стадии (в период поражения еще небольшого % островковых клеток, не отражающегося на углеводном обмене).

В развитии СД1 можно выделить несколько периодов. I - характеризуется наличием генетической предрасположенности. Возможно провоцирующее событие - инфекция или интоксикация, запускающая аутоиммунное разрушение в-клеток. Продолжается от 3-4 до 10-12 лет. II - в этом периоде происходит аутоиммунное разрушение в-клеток, но продукция инсулина оставшимися клетками вполне достаточна. III - период «скрытого диабета»: уровень глюкозы натощак еще нормальный, но сахарная кривая после нагрузки глюкозой становится патологической, что свидетельствует о произошедшем существенном уменьшении количества в-клеток. IV - период «явного диабета»: разрушено около 90% в-клеток, гипергликемия натощак и клиника СД. Обычный возраст больных к этому времени- 20 лет. V - терминальный диабет с клиникой осложнений.

Патогенез инсулиновой недостаточности при сахарном диабете типа 2.

Ведущим звеном патогенеза СД2 является инсулинорезистентность (недостаточная чувствительность инсулинзависимых тканей к инсулину), сопровождающаяся относительной инсулиновой недостаточностью даже на фоне компенсаторной гиперинсулинемии.

В таблице 5 представлена клинико-лабораторная характеристика СД2 в сопоставлении с СД1, что позволяет охарактеризовать различия между этими двумя формами СД. Из приводимого в этой таблице материала можно видеть, что генетическая предрасположенность к СД2 играет большую роль, чем при СД1. Так, частота СД2 у родственников 1 степени родства составляет 20-40% (против 5-10% при СД1), а конкордантность по СД2 у однояйцовых близнецов достигает 80-90% (против 30--50% при СД1). Наследование СД2 полигенное, однако, в отличие от наследственной предрасположенности к СД1, оно не имеет связи с генетическими аномалиями в системе HLA.

Основные признаки сахарного диабета 1 и 2 типов

Распространенность в популяции

Возраст возникновения заболевания

дети, молодые люди

старше 40 лет

Развитие симптомов

постепенное (месяцы, годы)

0 Телосложение

чаще ожирение

Инсулин в крови

нормален или повышен

глюкозурия и

часто ацетонурия

Глюкозурия

Склонность к кетоацидозу

Антитела к островковым

Наследственность

Поражено < 10% родственников 1-й линии, конкордантность среди близнецов -30-50%

Поражено > 20% родственников 1-й линии, конкордантность среди близнецов 80-90%

Ассоциация с HLA

Поздние осложнения

преимущественно микроангиопатии

преимущественно макроангиопатии

Сегодня предлагаются разные объяснения связи определенных особенностей генотипа с риском СД2:

Согласно наиболее распространенному взгляду, существуют генетические мутационные дефекты, обусловливающие возрастание риска СД2 подобно тому, как это наблюдается при СД1, с той разницей, что для СД2 число таких генов-кандидатов является значительно большим. На сегодняшний день выявлено уже более 30 генов, контролирующих функции в-клеток и тканевых инсулинорецепторов, вероятно участвующих в предрасположенности к СД2. При этом высказывается предположение, что гены, увеличивающие риск заболевания СД2, осуществляют свое влияние в кооперации не только друг с другом, но и с генами, вовлеченными в патогенез ожирения. Имеются также данные о значимости в патогенезе СД2 не только мутационных изменений генов, кодирующих процессы именно инсулинзависимой регуляции углеводного обмена, но и аномалий в генах, определяющих функции гликогенсинтетазы, адренорецепторов и рецептора глюкагона. диабет углеводный пищеварительный гликогеноз

Существует также гипотеза, что генетическая составляющая в этиологии СД2 обусловливается не мутациями, а изменениями уровня экспрессии генов, кодирующих секрецию инсулина, его взаимодействие с инсулинорецепторами тканей-мишеней, а также процессы, определяющие функциональное состояние инсулиновых рецепторов в инсулинзависимых тканях.

Каковой бы ни была природа наследственной предрасположенности к СД2, для его возникновения требуется и воздействие негенетических провоцирующих факторов. К таковым относят прежде всего ожирение, а также пожилой возраст, гиподинамию, беременность, стрессы. Предполагается, что инсулинорезистентность обусловливается либо уменьшением числа рецепторов инсулина не во всех, а в определенных тканях-мишенях (мышцы, жировая ткань, печень), либо нарушениями пострецепторных взаимодействий (интернализации гормон-рецепторного комплекса, аутофосфорилирования в-субъединицы рецептора или фосфорилирования других белковых субстратов внутриклеточных передающих сигнальных систем) в инсулинзависимых тканях.

Со стороны островкового аппарата ответом на инсулинорезистентность является компенсаторное усиление секреции инсулина, что в течение определенного промежутка времени позволяет преодолевать имеющуюся инсулиновую резистентность и препятствовать развитию стойкой гипергликемии. Однако хроническая гиперинсулинемия уменьшает число рецепторов на клетках-мишенях (развивается десенситизация), в результате чего инсулинорезистентность усиливается. в-клетки постепенно утрачивают способность реагировать на гипергликемию, т.е. продуцируют количество инсулина, недостаточное для полной нормализации уровня глюкозы, имеющего постоянную тенденцию к возрастанию из-за существующей (и при этом нарастающей) инсулинорезистентности. Именно так возникает относительный дефицит инсулина на фоне компенсаторной гиперинсулинемии. Длительное активное компенсаторное функционирование в-клеток сопровождается их декомпенсацией, в результате чего в поздней стадии СД2 инсулиновая недостаточность переходит из относительной в абсолютную, что диктует необходимость применения инсулинотерапии (как и при СД1).

5. Характер обменных нарушений при сахарном диабете

Углеводный обмен. Из-за абсолютного или относительного дефицита инсулина снижается поступление глюкозы в инсулинзависимые ткани (мышечную, жировую), что сопровождается их энергетическим голоданием.

Для противодействия тканевому энергодефициту в организме активизируются процессы, направленные на повышение уровня глюкозы в крови:

1). Возрастает секреция глюкагона, блокирующего сахароснижающий эффект инсулина. При выраженном кетоацидозе, соответствующем максимальному напряжению углеводного обмена, усиливается также секреция других контринсулярных гормонов - катехоламинов, кортизола и СТГ.

2) В печени и мышцах ослабляется синтез и активируется распад гликогена.

3) В кишечнике повышается активность глюкозо-6-фосфатазы, что соспровождается усилением всасывания пищевой глюкозы в кровь;

4) Усиливается глюконеогенез в печени и, в меньшей степени, в почках. При этом активируются процессы гликогенолиза (в печени и мышцах), протеолиза (в основном в мышцах) и липолиза (в жировой ткани), которые поставляют субстраты для образования глюкозы.

Результатом всех этих изменений является гипергликемия, провоцирующая как острые, так и хронические (поздние) осложнения СД.

Белковый обмен. Активация глюконеогенеза при СД сопровождается усилением распада белка (в особенности в мышечной ткани) и отрицательным азотистым балансом. При этом в крови и моче регистрируется возрастание уровней мочевины и аминокислот.

Избыточный катаболизм белка затрудняет нормальное течение пластических, в том числе и регенераторных, процессов. С этим связывается факт плохого заживления тканей после их травматизации у больных СД. Отклонения в белковом обмене негативно сказываются и на функционировании иммунной системы, в частности на образовании регулирующих иммунный ответ медиаторов белковой природы и антител. Это объясняет ослабление резистентности к инфекции больных СД. Активизации сапрофитной микрофлоры, вызывающей гнойничковые поражения кожи, способствует не только ослабление локального иммунитета, вызванное отклонениями белкового обмена, но и сама по себе гипергликемия, обеспечивающая благоприятные субстратные условия для условно патогенных микроорганизмов, активно использующих глюкозу. Эти же нарушения способствуют развитию дисбактериоза в урогенитальном тракте и кишечнике на фоне СД.

Жировой обмен. Возрастание липолиза и угнетение липогенеза, возникающих в результате дефицита инсулина и избытка контринсулярных гормонов (главным образом, глюкагона), мобилизуют свободные жирные кислоты (СЖК) из депо в жировой ткани. Это сопровождается гиперлипидемией и избыточным поступлением в печень СЖК, что провоцирует ее жировую инфильтрацию. Печень переключает метаболизм поступающих СЖК с процесса реэтерификации на их окисление с целью поддержания энергетического обмена в условиях внутриклеточного дефицита глюкозы. При этом образуется большое количество ацетил-КоА, который в условиях торможения липогенеза (из-за дефицита НАДФ + и торможения цикла Кребса) активно превращается в кетоновые тела (ацетоуксусную кислоту, в-оксимасляную кислоту и ацетон).

Если повышенное образование в печени кетоновых тел (кетогенез) начинает превышать способность организма к их утилизации и экскреции, то результатом этого становится кетонемия и связанные с ней метаболический ацидоз и интоксикация. Именно этот механизм лежит в основе одного из тяжелейших острых осложнений СД - кетоацидотической комы.

В условиях избытка образования ацетоуксусной кислоты усиливается синтез холестерина, ЛПОНП и ЛПНП, что является одной из составляющих атеросклеротического поражения сосудов при СД.

Водно-электролитный и кислотно-основной баланс. Гипергликемия повышает осмоляльность плазмы крови, что вызывает полиурию (выделение мочи более 2 л/сутки) и полидипсию (жажду, сопровождающуюся потреблением больших количеств жидкости). Полиурия возникает в результате осмотического диуреза, когда высокое осмотическое давление первичной мочи из-за глюкозурии препятствует обратному всасыванию воды в почечных канальцах.

Гиперосмоляльная гипогидратация обусловливает последующие важные факторы патогенеза - гиповолемию, уменьшение объема крови и гипоксию.

Гиперкетонемия вызывает кетонурию - в моче появляется ацетон. Выделение почками избытка кетоновых тел происходит в форме натриевых и калиевых солей, т.е. имеет место значительная потеря электролитов.

Неконтролируемая продукция кетоновых тел обусловливает истощение щелочного резерва, расходуемого на их нейтрализацию, что провоцирует возникновение метаболического ацидоза. Сдвигу рН в кислую сторону способствует также и накопление лактата вследствие активации гликолиза при гипоксии.

Поздние осложнения сахарного диабета.

К поздним осложнениям СД относятся:

макроангиопатия (облитерирующий атеросклероз аорты, коронарных, церебральных и периферических артерий; синдром диабетической стопы);

микроангиопатии (ретинопатия, нефропатия);

диабетическая нейропатия ;

диабетическая катаракта .

Для СД1 из поздних осложнений типичны микроангиопатия, тогда как для СД2 - макроангиопатия. Последнее связывается с возрастным фактором, т.к. пациенты с СД2 - это, как правило, лица пожилого и старческого возраста, для которого характерно постепенное прогрессирование системного атеросклероза, потенциирующего эффект хронической гипергликемии на артериальные сосуды.

Патогенез макроангиопатий. В основе диабетических макрососудистых осложнений лежит атеросклероз, риск развития которого при СД примерно в 4-5 раз выше, чем в популяции. Для диабетической макроангиопатии типичным является прежде всего поражение сосудов артериальной сети головного мозга, сердца и конечностей (особенно голени и стопы).

Причины увеличения частоты развития системного атеросклероза и тромботических осложнений у больных СД:

Нарушения обмена липидов проявляется при СД в виде общей липемии с повышением ЛПОНП, ЛПНП и одновременным снижением фракции ЛПВП. Это приводит как к усилению отложения липидов в интиме артерий, так и к реологическим нарушениям (повышению вязкости крови), способствующим тромбообразованию.

Дисфункция эндотелия. У больных СД снижено образование оксида азота, что способствуют постоянному повышению сосудистого тонуса и более активному образованию молекул адгезии (ICАМ-1, Е-селектинов). Повышенная адгезия к эндотелию тромбоцитов, макрофагов и моноцитов способствует выделению из них биологически активных веществ, провоцирующих локальное воспаление и тромбообразование.

Изменения в системе гемостаза. При СД отмечается тенденция к снижению фибринолитической активности, повышению многих факторов коагуляционного и сосудисто-тромбоцитарного гемостаза.

Пролиферация гладкомышечных клеток артерий при СД стимулируется избыточным образованием СТГ, а также ростовыми факторами, выделяющимися из активированных тромбоцитов и макрофагов, накапливающихся в участках сосудов с выраженной дисфункцией эндотелия.

Окислительный стресс. Является следствием аутоокисления глюкозы при длительной гипергликемии. Появляются такие гликоокисленные продукты как белковые карбонилы, липидные пероксиды и др., повреждающие прямо и косвенно сосудистую стенку.

Патогенез микроангиопатий, нейропатии и катаракты

Плохо контролируемая гликемия является главным, хотя и не единстве нным этиологическим фактором всех хронических осложнений диабета. Длительное и неконтролируемое воздействие глюкозы на различные структуры клеток, тканей и органов получило определение глюкозотоксичности. Существует несколько путей реализации феномена глюкозотоксичности.

Гликирование белков. Глюкоза способна взаимодействовать с белком с образованием гликированных продуктов без участия каких-либо ферментов. При взаимодействии глюкозы и белка сначала образуются ранние продукты -Шиффовые основания и фруктозамины, затем они переходят в стабильные продукты гликирования. Степень гликирования наиболее высока у длительно живущих белков. При этом нарушаются функции белков сыворотки крови, клеточных мембран, периферических нервов, коллагена, эластина, хрусталика, ЛПНП, гемоглобина. Конформационные изменения белков из-за из гликирования не только нарушают их функцию, но и провоцируют образование аутоантител к таким белкам, что способствует их деструкции.

Конечные продукты гликирования принимают непосредственное участие в экспрессии разных генов, участвующих в развитии патологических реакций и морфологических структур.

Результатом этих процессов являются разнообразные патологические состояния, включая нефропатию, нейропатию, ретинопатию, кардиомиопатию, нарушение переноса кислорода гемоглобином с последующей ишемией тканей.

Накопление сорбитола. При гипергликемии глюкоза накапливается в инсулиннезависимых тканях (нервной системе, перицитах сетчатки, хрусталике, стенках сосудов, поджелудочной железе), куда она поступает по градиенту концентраций. Под влиянием альдозоредуктазы глюкоза превращается в циклический спирт - сорбит (в норме практически вся глюкоза внутриклеточно должна метаболизироваться в гексокиназной реакции с образованием глюкозо-6-фосфата, который затем используется в разных реакциях метаболизма). При накоплении сорбитола отмечается повышение внутриклеточнонго осмотического давления, что вызывает клеточную гипергидратацию (осмотический отек). Кроме того, сорбитол превращается во фруктозу, которая более активно, чем глюкоза, вызывает гликирование внутриклеточных белков и тем самым нарушает клеточный метаболизм.

Аутоокисление глюкозы. В клетках (особенно эндотелия и нервной ткани) образуются высокореакционные свободные радикалы.

В патогенезе нефропатии при СД следует отметить нарушение синтеза и обмена гликозаминогликанов, участвующих в структуре и функции базальной мембраны клубочков, а в патогенезе ретинопатии - неоваскуляризацию в результате усиленного образования различных факторов роста.

Диагностика сахарного диабета.

Клиническая картина «развернутого» СД складывается из типичных симптомов и жалоб больных, к которым относятся:

жажда, сопровождаемая приемом больших количеств жидкости (полидипсия); увеличение суточного диуреза (полиурия); похудание (при СД1) или ожирение (при СД2) на фоне повышенного аппетита (полифагия) (3 «П»).

Кроме того, при СД могут выявляться: быстрая утомляемость, слабость; кожный зуд, фурункулез; урогенитальные расстройства (хр.пиелонефрит, хр.цистит, у женщин - симптомы вагинита, у мужчин - баланит, снижение потенции); сосудистые нарушения (ИБС, нарушение мозгового кровообращения, поражение периферических артерий, трофические язвы стопы); периферическая нейропатия (нарушение чувствительности, боли, снижение рефлексов); признаки нефропатии (протеинурия, почечные отеки артериальная гипертензия); нарушения зрения (из-за прогрессирующей диабетической ретинопатии).

Для подтверждения диагноза сахарного диабета достаточно любых двух из приведенных ниже трех лабораторных критериев:

уровень глюкозы плазмы натощак более 7,0 ммоль/л;

через 2 часа после проведения теста толерантности с 75 г глюкозы уровень глюкозы в плазме - более 11 ммоль/л.

глюкозурия (при полиурии)

6. Метаболический синдром

Определение понятия и диагностика метаболического синдрома.

Метаболический синдром - симптомокомплекс у лиц с ожирением и наличием лабораторных признаков: 1) нарушений углеводного обмена (нарушение толерантности к глюкозе, увеличение уровня глюкозы натощак, гиперинсулинемия); 2) нарушений жирового обмена (увеличение в крови триглицеридов, снижение липопротеинов высокой плотности - ЛПВП). Ожирение диагностируется при значениях индекса массы тела (ИМТ) > 30.

Патогенез метаболического синдрома.

Центральным звеном патогенеза метаболического синдрома является инсулинорезистентность. Таким образом, механизмы развития метаболического синдрома и СД2 по сути являются идентичными. Разница между этими двумя патологиями состоит в том, что у лиц с метаболическим синдромом (без сочетания с СД2) отклонения показателей, характеризующих содержание глюкозы в крови натощак или при постановке теста на толерантность к глюкозе, оказываются меньшими тех значений, при которых подтверждается наличие сахарного диабета. Это указывает на то, что при метаболическом синдроме, не сочетающимся с сахарным диабетом, степень нечувствительности инсулин-зависимых тканей к инсулину является менее выраженной, чем при СД2. Тем не менее, с учетом неуклонного прогрессирования инсулинорезистентности при метаболическом синдроме (при отсутствии своевременно назначенного лечения) представляется закономерным переход этого состояния в типичный СД2.

Особую значимость в развитии инсулинорезистентности при метаболическом синдроме придают абдоминальному (синонимы: висцеральному, андроидному, центральному) ожирению. Известно, что висцеральная жировая ткань имеет низкую чувствительность к антилиполитическому действию инсулина (особенно в постпрандиальный, т.е. после приема пищи, период), при одновременно высокой чувствительности к катехоламинам. Интенсивный липолиз в висцеральных адипоцитах под влиянием нервных (симпатических) и гормональных (глюкокортикоиды, андрогены, катехоламины) стимулов у лиц с избытком абдоминальной жировой ткани приводит к выделению больших, чем в норме, количеств свободных жирных кислот (СЖК). Аномально высокие количества СЖК препятствуют связыванию инсулина с гепатоцитами, что снижает экстракцию (захват из крови) и метаболическую переработку инсулина печенью и способствует развитию системной гиперинсулинемии. Одновременно СЖК подавляют тормозящее действие инсулина на глюконеогенез, способствуя увеличению продукции глюкозы печенью. Избыток СЖК в крови служит источником накопления триглицеридов и продуктов неокислительного метаболизма СЖК в скелетных мышцах, мышце сердца. Это является причиной нарушения утилизации глюкозы в указанных тканях, что собственно и является проявлением периферической инсулинорезистентности, типичной как для метаболического синдрома, так и для СД2.

Клиническая значимость и принципы терапии метаболического си н дрома.

Клиническая значимость метаболического синдрома состоит в том, что его можно рассматривать как предболезнь для СД2. Кроме того, независимо от того, сочетается или нет данный синдром с сахарным диабетом, метаболический синдром является самостоятельным фактором риска для развития системного атеросклероза его органных проявлений (ишемической болезни сердца, артер иальной гипертензии, нефросклероза).

Размещено на Allbest.ru

...

Подобные документы

    Типы сахарного диабета. Развитие первичных и вторичных нарушений. Отклонения при сахарном диабете. Частые симптомы гипергликемии. Острые осложнения заболевания. Причины кетоацидоза. Уровень инсулина в крови. Секреция бета-клетками островков Лангерганса.

    реферат , добавлен 25.11.2013

    Патогенез диабетического кетоацидоза, его клинические и метаболические признаки. Развитие диабетической комы и ее последствия. Проявления избыточного гликозилирования белков при сахарном диабете. Обнаружение нарушений углеводного обмена методом нагрузок.

    реферат , добавлен 13.04.2009

    Нарушение расщепления и всасывания углеводов. Врожденная недостаточность лактазы. Основные типы регуляции углеводного обмена. Этиопатогенез, основные причины и признаки сахарного диабета, хронические осложнения. Гипергликемические состояния у человека.

    лекция , добавлен 13.04.2009

    Причины нарушения углеводного обмена, развитие сахарного диабета, изучение его распространенности, клинические формы заболевания, успехи в диагностике, профилактике и лечении. Самостоятельные занятия больных и особенности физкультуры при диабете.

    реферат , добавлен 28.06.2009

    Изучение видов, патогенеза и лечения диабетических ком, как одного из самых тяжёлых осложнений сахарного диабета, возникающего в результате абсолютной или относительной недостаточности инсулина и метаболических нарушений. Гипо- и гипергликемическая кома.

    реферат , добавлен 26.11.2015

    Классификация и клинические проявления нарушений обмена веществ. Наследственные нарушения обмена веществ. Распространенность наследственных заболеваний обмена веществ с неонатальным дебютом. Клиническая характеристика врожденных дефектов метаболизма.

    презентация , добавлен 03.07.2015

    Рассмотрение этапов обмена углеводов: переваривание и всасывание, депонирование, промежуточный обмен, выделение глюкозы почками и ее реабсорбция. Основная причина инсулинрезистентности: нарушение функций мембранных рецепторов инсулина при ожирении.

    презентация , добавлен 26.04.2015

    Молекулярные нарушения углеводного обмена. Нарушение распада галактозы в печени из-за недостатка галактозо-1-фосфата. Фруктозонемия и фруктозоурия. Патологические типы гипергликемий и гипогликемий. Нарушение инсулинзависимой реабсорбции глюкозы.

    презентация , добавлен 27.09.2016

    Состояние организма при недостаточном поступлении пищи. Нарушение обмена веществ, переваривания и всасывания пищевых веществ. Полное, неполное и абсолютное голодание. Атрофические изменения в органах и тканях при белково-энергетической недостаточности.

    презентация , добавлен 22.12.2015

    Ожирение как ведущий механизм патогенеза МС и как фактор, способствующий развитию проатерогенных нарушений обмена углеводов. Прогрессирование атеросклероза у женщин. Зависимость между массой подкожной жировой ткани и нарушениями липидного метаболизма.

Углеводы играют важную роль в организме - обеспечивают возмещение утраты энергии после нагрузок и стрессов. Организм получает их из продуктов питания. Пищеварительная система разлагает сложные углеводы до простых, после чего они попадают в кровь и доставляются ею к органам и тканям, в том числе к мозгу. Биохимические процессы по выработке клетками энергии невозможны без углеводов, основным из которых является глюкоза.

Патологии обычно проявляются увеличением или снижением уровня в крови глюкозы. Нарушения углеводного обмена бывают двух видов: избыточность углеводов или их нехватка.

Симптомы нарушения углеводного обмена

По избыточному типу:

  • повышенная физическая и эмоциональная активность;
  • большой вес, ожирение;
  • повышенное артериальное давление и сердечно-сосудистые заболевания;
  • периодическая дрожь тела и конечностей;
  • высокие показатели содержания в крови глюкозы;
  • сухость во рту, постоянное чувство жажды.

По недостаточному типу:

  • непреходящие сонливость и слабость;
  • дрожание конечностей (тремор);
  • одышка;
  • головокружения и головные боли;
  • высокое содержание в крови кетоновых тел и ацетона (кетоацидоз), сопровождающееся рвотой и комой;
  • апатия, депрессивное состояние;
  • низкие показатели содержания в крови глюкозы.

Чрезмерное количество углеводов вызывает такие заболевания, как ожирение, гипергликемия и сахарный диабет, а недостаточное - болезнь Гирке (неспособность перерабатывать глюкозу) и гипогликемия.

Причины нарушений углеводного обмена:

  • наследственные (неспособность к выработке определённых ферментов);
  • сбои в углеводной функции печени;
  • патологии нервно-гормональной регуляции;
  • опухоли;
  • расстройство кровообращения;
  • токсические поражения;
  • изнуряющие физические нагрузки, неправильное питание, стресс.

Лечение нарушений углеводного обмена проводится под обязательным врачебным наблюдением и сопровождается постоянным контролем глюкозных показателей крови. Программа терапии включает в себя:

  • средства, снижающие сахар (аспарт, лизпро, инсулин короткого действия, натеглинид);
  • акарбоза (ингибитор α-глюкозидазы) и бигуаниды;
  • лечение основного заболевания, если нарушения развились как осложнение (включая гормональную терапию и хирургические манипуляции);
  • диета с пониженной калорийностью;
  • умеренные контролируемые физические нагрузки, массаж;
  • психотерапия;
  • фитопрепараты (кровохлёбка, калина, душица, крапива, сушеница, сельдерей, череда, крушина).