Электронная конфигурация атома таблица. Электронные формулы

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали - сферические;
  • р-, d и f-орбитали - гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение - водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:

  • кальций -

    1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

  • кислород -

    1s 2 2s 2 2p 4 ;

  • углерод -

    1s 2 2s 2 2p 2 .

Записать электронную формулу помогает таблица Менделеева. Количеству энергетических уровней соответствует номер периода. На заряд атома и количество электронов указывает порядковый номер элемента. Номер группы показывает, сколько валентных электронов находится на внешнем уровне.

Для примера возьмём Na. Натрий находится в первой группе, в третьем периоде, под 11 номером. Это значит, что атом натрия имеет положительно заряженное ядро (содержит 11 протонов), вокруг которого на трёх энергетических уровнях располагается 11 электронов. На внешнем уровне находится один электрон.

Вспомним, что первый энергетический уровень содержит s-орбиталь с двумя электронами, а второй - s- и р-орбитали. Остаётся заполнить уровни и получить полную запись:

11 Na) 2) 8) 1 или 1s 2 2s 2 2p 6 3s 1 .

Для удобства созданы специальные таблицы электронных формул элемента. В длинной периодической таблице формулы также указываются в каждой клетке элемента.

Рис. 3. Таблица электронных формул.

Для краткости в квадратных скобках записаны элементы, электронная формула которых совпадает с началом формулы элемента. Например, электронная формула магния - 3s 2 , неона - 1s 2 2s 2 2p 6 . Следовательно, полная формула магния - 1s 2 2s 2 2p 6 3s 2 . 4.6 . Всего получено оценок: 195.

При написании электронных формул атомов элементов указывают энергетические уровни (значения главного квантового числа n в виде цифр – 1, 2, 3 и т.д.), энергетические подуровни (значения орбитального квантового числа l в виде букв – s , p , d , f ) и цифрой вверху указывают число электронов на данном подуровне.

Первым элементом в таблице Д.И. Менделеева является водород, следовательно, заряд ядра атома Н равен 1, в атоме только один электрон на s -подуровне первого уровня. Поэтому электронная формула атома водорода имеет вид:


Вторым элементом является гелий, в его атоме два электрона, поэтому электронная формула атома гелия – 2 Не 1s 2 . Первый период включает в себя только два элемента, так как заполняется электронами первый энергетический уровень, который могут занять только 2 электрона.

Третий по порядку элемент – литий – находится уже во втором периоде, следовательно, у него начинает заполняться электронами второй энергетический уровень (об этом мы говорили выше). Заполнение электронами второго уровня начинается с s -подуровня, поэтому электронная формула атома лития – 3 Li 1s 2 2s 1 . В атоме бериллия завершается заполнение электронами s -подуровня: 4 Ве 1s 2 2s 2 .

У последующих элементов 2-го периода продолжает заполняться электронами второй энергетический уровень, только теперь электронами заполняется р -подуровень: 5 В 1s 2 2s 2 2р 1 ; 6 С 1s 2 2s 2 2р 2 … 10 Ne 1s 2 2s 2 2р 6 .

У атома неона завершается заполнение электронами р -подуровня, этим элементом заканчивается второй период, в нем восемь электронов, так как на s - и р -подуровнях могут находиться только восемь электронов.

У элементов 3-го периода имеет место аналогичная последовательность заполнения электронами энергетических подуровней третьего уровня. Электронные формулы атомов некоторых элементов этого периода имеют вид:

11 Na 1s 2 2s 2 2р 6 3s 1 ; 12 Mg 1s 2 2s 2 2р 6 3s 2 ; 13 Al 1s 2 2s 2 2р 6 3s 2 3p 1 ;

14 Si 1s 2 2s 2 2р 6 3s 2 3p 2 ;…; 18 Ar 1s 2 2s 2 2р 6 3s 2 3p 6 .

Третий период, как и второй, заканчивается элементом (аргоном), у которого завершается заполнение электронами р –подуровня, хотя третий уровень включает в себя три подуровня (s , р , d ). Согласно приведенному выше порядку заполнения энергетических подуровней в соответствии с правилами Клечковского, энергия подуровня 3d больше энергии подуровня 4s , поэтому у следующего за аргоном атома калия и стоящего за ним атома кальция заполняется электронами 3s –подуровень четвертого уровня:

19 К 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 ; 20 Са 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 .

Начиная с 21-го элемента – скандия, в атомах элементов начинает заполняться электронами подуровень 3d . Электронные формулы атомов этих элементов имеют вид:


21 Sc 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 1 ; 22 Ti 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 2 .

В атомах 24-го элемента (хрома) и 29-го элемента (меди) наблюдается явление, называемое «проскоком» или «провалом» электрона: электрон с внешнего 4s –подуровня «проваливается» на 3d –подуровень, завершая заполнение его наполовину (у хрома) или полностью (у меди), что способствует бóльшей устойчивости атома:

24 Cr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 5 (вместо …4s 2 3d 4) и

29 Cu 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 10 (вместо …4s 2 3d 9).

Начиная с 31-го элемента – галлия, продолжается заполнение электронами 4-го уровня, теперь – р –подуровня:

31 Ga 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 1 …; 36 Кr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 6 .

Этим элементом и завершается четвертый период, который включает в себя уже 18 элементов.

Аналогичный порядок заполнения электронами энергетических подуровней имеет место в атомах элементов 5-го периода. У первых двух (рубидия и стронция) заполняется s –подуровень 5-го уровня, у последующих десяти элементов (с иттрия по кадмий) заполняется d –подуровень 4-го уровня; завершают период шесть элементов (с индия по ксенон), в атомах которых происходит заполнение электронами р –подуровня внешнего, пятого уровня. В периоде тоже 18 элементов.

У элементов шестого периода такой порядок заполнения нарушается. В начале периода, как обычно, находятся два элемента, в атомах которых заполняется электронами s –подуровень внешнего, шестого, уровня. У следующего за ними элемента – лантана – начинает заполняться электронами d –подуровень предыдущего уровня, т.е. 5d . На этом заполнение электронами 5d -подуровня прекращается и у следующих 14 элементов – с церия по лютеций – начинает заполняться f -подуровень 4-го уровня. Эти элементы включены все в одну клетку таблицы, а внизу приведен развернутый ряд этих элементов, называемых лантаноидами.

Начиная с 72-го элемента – гафния – по 80-й элемент – ртуть, продолжается заполнение электронами 5d –подуровня, и завершается период, как обычно шестью элементами (с таллия по радон), в атомах которых заполняется электронами р –подуровень внешнего, шестого, уровня. Это самый большой период, включающий в себя 32 элемента.

В атомах элементов седьмого, незавершенного, периода просматривается тот же порядок заполнения подуровней, что описан выше. Предоставляем студентам самим написать электронные формулы атомов элементов 5 – 7-го периодов с учетом всего сказанного выше.

Примечание: в некоторых учебных пособиях допускается другой порядок записи электронных формул атомов элементов: не в порядке их заполнения, а в соответствии с приводимым в таблице количеством электронов на каждом энергетическом уровне. Например, электронная формула атома мышьяка может иметь вид: As 1s 2 2s 2 2р 6 3s 2 3p 6 3d 10 4s 2 4p 3 .

Условное изображение распределения электронов в электронном облаке по уровням, подуровням и орбиталям называется электронной формулой атома .

Правила, на основе|основании| которых|каких| составляют|сдают| электронные формулы

1. Принцип минимальной энергии : чем меньший запас энергии имеет система, тем более стойкой она является.

2. Правило Клечковского : распределение электронов по уровням и подуровням электронного облака происходит в порядке возростания значения суммы главного и орбитального квантовых чисел (n + 1). В случае равенства значений (n + 1) первым заполняется тот подуровень, который имеет меньшее значение n .

1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f Номер уровня n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 Орбитальное 1* 0 0 1 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 квантовое число

n+1| 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

Ряд Клечковского

1* - смотри таблицу №2.

3. Правило Хунда : при заполнении орбиталей одного подуровня низшему уровню энергии отвечает размещение электронов с параллельными спинами.

Составление|сдает| электронных формул

Потенциальный ряд:1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f

(n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

Ряд Клечковского

Порядок заполнения Електрони 1s 2 2s 2 p 6 3s 2 p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 ..

(n+l|) 1 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8.

Электронная формула 1s 2 2s 2 p 6 3s 2 p 6 d 10 4s 2 p 6 d 10 f 14 5s 2 p 6 d 10 f 14 6s 2 p 6 d 10 f 14 7s 2 p 6 d 10 f 14 8...

(n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

Информативность электронных формул

1. Положение элемента в периодической|периодичной| системе.

2. Возможны степени| окисления элемента.

3. Химический характер элемента.

4. Состав|склад| и свойства соединений элемента.

    Положение элемента в периодической |периодичной| системе Д.И.Менделеева:

а) номер периода , в котором находится элемент, отвечает числу уровней, на которых располагаются электроны;

б) номер группы , к которой принадлежит данный элемент, равняется сумме валентных электронов. Валентные электроны для атомов s- и р- элементов – это электроны внешнего уровня; для d – элементов - это электроны внешнего уровня и незаполненного подуровня предыдущего уровня.

в) электронное семейство определяется по символу подуровня, на который поступает последний электрон (s-, p-, d-, f-).

г) подгруппа определяется по принадлежности к электронному семейству: s - и р – элементы занимают главные подгруппы, а d – элементы - побочные, f – элементы занимают отдельные разделы в нижней части периодической системы (актиноиды и лантаноиды).

2. Возможные степени | окисления элементов.

Степень окисления – это заряд, который приобретает атом, если отдает или присоединяет электроны.

Атомы, которые отдают электроны, приобретают положительный заряд, который равняется числу отданных электронов (заряд электрона (-1)

Z Е 0 – ne  Z E + n

Атом, который отдал электроны превращается в катион (положительный заряженный ион). Процесс отрыва электрона от атома называется процессом ионизации. Энергия, необходимая на осуществление этого процесса называется энергией ионизации (Эион, еВ).

Первыми отделяются от атома электроны внешнего уровня, которые на орбитали не имеют пары, - розпарованные. При наличии свободных орбиталей в пределах одного уровня под действием внешней энергии электроны, которые образовывали на данном уровне пары, розпаровываються, а затем отделяются все вместе. Процесс розпаровывания, который происходит в результате поглощения одним из электронов пары порции энергии и переходом его на высший подуровень, называется процессом возбуждения.

Наибольшее количество электронов, которые может отдать атом, равняется числу валентных электронов и отвечает номеру группы, в которой расположен элемент. Заряд, который приобретает атом после потери всех валентных электронов, называется высшей степенью окисления атома.

После освобождения|увольнения| валентного уровня внешним становится|стает| уровень, который|какой| предшествовал валентному. Это полностью заполненный электронами уровень, и потому|и поэтому| энергетически стойкий.

Атомы элементов, которые имеют на внешнем уровне от 4 до 7 электронов, достигают энергетически стойкого состояния не только путем отдачи электронов, но и путем их присоединения. Вследствие этого образуется уровень (.ns 2 p 6) – стойкое инертногазовое состояние.

Атом, который присоединил электроны, приобретает отрицательную степень окисления – отрицательный заряд, который равняется числу принятых электронов.

Z Е 0 + ne  Z E - n

Число электронов, которые может присоединить атом, равняется числу (8 –N|), где N – это номер группы, в которой|какой| расположен элемент (или число валентных электронов).

Процесс присоединения электронов к атому сопровождается выделением энергии, которая называется сродством к электрону (Эсродства, еВ ).

Алгоритм составления электронной формулы элемента:

1. Определите число электронов в атоме используя Периодическую таблицу химических элементов Д.И. Менделеева .

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором - максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем - максимум 18 (два s , шесть p , и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s- подуровень, затем р-, d- b f- подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Примеры.

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

1s 2 2s 2 2p 6 3s 2 3p 6 .

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная формула аргона.

Электронную формулу цинка можно представить в виде.

Выясним, как составить электронную формулу химического элемента. Этот вопрос является важным и актуальным, так как дает представление не только о строении, но и о предполагаемых физических и химических свойствах рассматриваемого атома.

Правила составления

Для того чтобы составить графическую и электронную формулу химического элемента, необходимо иметь представление о теории строения атома. Начнем с того, что есть два основных компонента атома: ядро и отрицательные электроны. Ядро включает в себя нейтроны, которые не имеют заряда, а также протоны, обладающие положительным зарядом.

Рассуждая, как составить и определить электронную формулу химического элемента, отметим, что для нахождения числа протонов в ядре, потребуется периодическая система Менделеева.

Номер элемента по порядку соответствует количеству протонов, находящихся в его ядре. Номер периода, в котором располагается атом, характеризует число энергетических слоев, располагаются на которых электроны.

Для определения количества нейтронов, лишенных электрического заряда, необходимо из величины относительной массы атома элемента, отнять его порядковый номер (количество протонов).

Инструкция

Для того чтобы понять, как составить электронную формулу химического элемента, рассмотрим правило заполнения отрицательными частицами подуровней, сформулированное Клечковским.

В зависимости от того, каким запасом свободной энергии обладают свободные орбитали, составляется ряд, характеризующий последовательность заполнения уровней электронами.

Каждая орбиталь содержит всего два электрона, которые располагаются антипараллельными спинами.

Для того чтобы выразить структуру электронных оболочек, применяют графические формулы. Как выглядят электронные формулы атомов химических элементов? Как составлять графические варианты? Эти вопросы включены в школьный курс химии, поэтому остановимся на них подробнее.

Существует определенная матрица (основа), которую используют при составлении графических формул. Для s-орбитали характерна только одна квантовая ячейка, в которой противоположно друг другу располагается два электрона. Их в графическом виде обозначаются стрелками. Для р-орбитали изображают три ячейки, в каждой также находится по два электрона, на d орбитали располагается десять электронов, а f заполняется четырнадцатью электронами.

Примеры составления электронных формул

Продолжим разговор о том, как составить электронную формулу химического элемента. Например, нужно составить графическую и электронную формулу для элемента марганца. Сначала определим положение данного элемента в периодической системе. Он имеет 25 порядковый номер, следовательно, в атоме располагается 25 электронов. Марганец - это элемент четвертого периода, следовательно, у него четыре энергетических уровня.

Как составить электронную формулу химического элемента? Записываем знак элемента, а также его порядковый номер. Пользуясь правилом Клечковского, распределяем по энергетическим уровням и подуровням электроны. Последовательно располагаем их на первом, втором, а также третьем уровне, вписывая в каждую ячейку по два электрона.

Далее суммируем их, получая 20 штук. Три уровня в полном объеме заполнены электронами, а на четвертом остается только пять электронов. Учитывая, что для каждого вида орбитали характерен свой запас энергии, оставшиеся электроны распределяем на 4s и 3d подуровень. В итоге готовая электронно-графическая формула для атома марганца имеет следующий вид:

1s2 / 2s2, 2p6 / 3s2, 3p6 / 4s2, 3d3

Практическое значение

С помощью электронно-графических формул можно наглядно увидеть число свободных (неспаренных) электронов, определяющих валентность данного химического элемента.

Предлагаем обобщенный алгоритм действий, с помощью которого можно составить электронно-графические формулы любых атомов, располагающихся в таблице Менделеева.

В первую очередь необходимо определить количество электронов, используя периодическую систему. Цифра периода указывает на численность энергетических уровней.

Принадлежность к определенной группе связана с количеством электронов, находящихся на наружном энергетическом уровне. Подразделяют уровни на подуровни, заполняют их с учетом правила Клечковского.

Заключение

Для того чтобы определить валентные возможности любого химического элемента, расположенного в таблице Менделеева, необходимо составить электронно-графическую формулу его атома. Алгоритм, приведенный выше, позволит справиться с поставленной задачей, определить возможные химические и физические свойства атома.