Болтливый мир безмолвия. Эхолокация в природе. Удивительный мир звука. И.Клюкин. Эхолокация у людей, животных и в технике Смотреть что такое "эхолокация" в других словарях

И дельфины испускают ультразвук. Зачем это нужно и как оно работает? Давайте разберемся, что такое эхолокация и как она помогает животным и даже людям.

Что такое эхолокация

Эхолокация, также называемая биосонаром, представляет собой биологический гидролокатор, используемый несколькими видами животных. Эхолоцирующие животные излучают сигналы в окружающую среду и слушают отголоски тех вызовов, которые возвращаются из разных объектов рядом с ними. Они используют эти эхо-сигналы для поиска и идентификации объектов. Эхолокация применяется для навигации и для фуража (или охоты) в различных условиях.

Принцип работы

Эхолокация - это то же самое, что и активный сонар, который использует звуки, воспроизводимые самим животным. Ранжирование осуществляется путем измерения временной задержки между собственным звуковым излучением животного и любыми эхо-сигналами, возвращающимися из окружающей среды.

В отличие от некоторых гидролокаторов, созданных человеком, которые полагаются на чрезвычайно узкие лучи и множество приемников для локализации мишени, метод эхолокации животных основан на одном передатчике и двух приемниках (уши). Эхо-сигналы, возвращающиеся к двум ушам, поступают в разное время и на разных уровнях громкости, в зависимости от положения объекта, генерирующего их. Различия во времени и громкости используются животными для восприятия расстояния и направления. С эхолокацией летучая мышь или другое животное может видеть не только расстояние до предмета, но и его размер, то, какое это животное, и другие особенности.

Летучие мыши

Летучие мыши используют эхолокацию для навигации и фуража, часто в полной темноте. Они обычно выходят из своих ночлегов в пещерах, чердаках или деревьях в сумерках и охотятся за насекомыми. Благодаря эхолокации летучие мыши заняли очень выгодную позицию: они охотятся ночью, когда много насекомых, меньше конкуренции за еду и меньше видов, которые могут охотиться на самих летучих мышей.

Летучие мыши генерируют ультразвук через гортань и излучают звук через открытый рот или, что гораздо реже, нос. Они испускают звук в диапазоне от 14 000 до более 100 000 Гц, в основном за пределами человеческого уха (типичный диапазон слуха человека - от 20 Гц до 20 000 Гц). Летучие мыши могут оценить перемещение целей путем интерпретации картин, вызванных отражением эхо-сигналов от специального лоскута кожи во внешнем ухе.

Отдельные виды летучих мышей используют эхолокацию в определенных диапазонах частот, которые соответствуют их условиям жизни и типам добычи. Это иногда использовалось исследователями для определения вида летучих мышей, населяющих этот район. Они просто записывали их сигналы с помощью ультразвуковых регистраторов, известных как детекторы летучих мышей. В последние годы исследователи из нескольких стран разработали библиотеки сигналов летучих мышей, которые содержат записи местных видов.

Морские животные

Биосонар ценен для подотряда зубатых китов, который включает в себя дельфинов, касаток и кашалотов. Они живут в подводной среде обитания, которая обладает благоприятными акустическими характеристиками, и где видение чрезвычайно ограничено из-за мутности воды.

Наиболее значимых первых результатов в описании эхолокации дельфинов добились Уильям Шевилл и его жена Барбара Лоренс-Шевилл. Они занимались кормлением дельфинов и однажды заметили, что те безошибочно находят кусочки рыбы, которые бесшумно опускались в воду. За этим открытием последовал ряд других экспериментов. На данный момент установлено, что дельфины используют частоты в диапазоне от 150 до 150 000 Гц.

Эхолокация синих китов изучена намного меньше. Пока что только строятся предположения, что «песни» китов - это способ навигации и связи с сородичами. Эти знания используются для подсчета популяции и для слежения за миграциями этих морских животных.

Грызуны

Понятно, что такое эхолокация у морских животных и летучих мышей, и для чего она им нужна. Но зачем это грызунам? Единственными наземными млекопитающими, способными к эхолокации, являются два рода землероек, тейреки с Мадагаскара, крысы и щелезубы. Они испускают серию ультразвуковых скрипов. Они не содержат эхолокационных откликов с реверберациями и, по-видимому, используются для простой пространственной ориентации на близком расстоянии. В отличие от летучих мышей, землеройки используют эхолокацию только для изучения мест обитания добычи, а не для охоты. За исключением больших и, таким образом, сильно отражающих объектов (к примеру, большой камень или ствол дерева), они, вероятно, не способны распутывать эхо-сцены.

Самые талантливые эхолокаторы

Кроме перечисленных животных, есть и другие, способные заниматься эхолокацией. Это некоторые виды птиц и тюленей, но самые изощренные эхолокаторы - это рыбы и миноги. Раньше учёные считали летучих мышей самыми способными, но в последние десятилетия выяснилось, что это не так. Воздушная среда не располагает к эхолокации - в отличие от водной, в которой звук расходится в пять раз быстрее. Эхолокатором рыб является орган боковой линии, который воспринимает вибрации окружающей среды. Используется как для навигации, так и для охоты. У некоторых видов есть ещё и электрорецепторы, которые улавливают электрические колебания. Что такое эхолокация для рыб? Часто это синоним выживания. Она объясняет, как ослепшие рыбы могли доживать до почтенного возраста - им и не нужно было зрение.

Эхолокация у животных помогла объяснить схожие способности у слабовидящих и незрячих людей. Они ориентируются в пространстве с помощью издаваемых ними щелкающих звуков. Ученые говорят, что такие короткие звуки издают волны, которые можно сравнить со светом карманного фонарика. На данный момент слишком мало данных для разработки этого направления, поскольку способные эхолокаторы среди людей - большая редкость.

А. М. Рейман ,
, ИПФ РАН, г. Нижний Новгород

Что умеет ультразвук?

Введение и предыстория

Начнём с определения: «Ультразвук (УЗ) – упругие колебания и волны, частота которых превышает 15–20 кГц. Верхняя граница УЗ-частот обусловлена физической природой упругих волн и достигает 1 ГГц» . За этим кратким определением скрывается огромный мир акустики, поражающей разнообразием физических явлений, оригинальностью технических решений, да и самой возможностью «услышать неслышимое».

Как и многие другие физические явления, УЗ-волны обязаны своим открытием случаю. В 1876 г. английский физик Фрэнк Гальтон, изучая генерацию звука свистками особой конструкции (резонаторов Гельмгольца), носящими теперь его имя, обнаружил, что при определённых размерах камеры звук перестаёт быть слышимым. Можно было предположить, что звук просто не излучается, однако Гальтон сделал вывод, что звук не слышен потому, что его частота становится слишком высокой. Кроме физических соображений, в пользу этого вывода свидетельствовала реакция животных (прежде всего собак) на применение такого свистка.

Свисток Гальтона (резонатор Гельмгольца)

Очевидно, что излучать ультразвук с помощью свистков можно, но не слишком удобно. Ситуация изменилась после открытия пьезоэффекта Пьером Кюри в 1880 г., когда появилась возможность излучать звук, не продувая резонатор потоком воздуха, а подавая на пьезокристалл переменное электрическое напряжение. Однако, несмотря на появление достаточно удобных источников и приёмников ультразвука (тот же пьезоэффект позволяет преобразовывать энергию акустических волн в электрические колебания) и на огромные успехи физической акустики как науки, связанной с такими именами, как Уильям Стрэтт (лорд Рэлей), ультразвук рассматривался в основном как объект для изучения, но не для применения.

УЗ-томограмма трещины в металле

УЗ-томограмма руки

Следующий шаг был сделан в 1912 г., когда всего через два месяца после гибели «Титаника» австрийский инженер Александр Бем создал первый в мире эхолот. Представьте себе, как могла измениться история! С этих пор и до настоящего времени УЗ-гидролокация остаётся незаменимым инструментом для надводных и подводных кораблей.

Ещё один принципиальный сдвиг в развитии УЗ-техники был сделан в 20-е гг. XX в.: в СССР были проведены первые эксперименты по прозвучиванию сплошного металла ультразвуком с приёмом на противоположном краю образца, причём регистрирующая техника была устроена так, что можно было получать двумерные теневые изображения трещин в металле, подобные рентгеновским (трубка С.А.Соколова). Так началась УЗ-дефектоскопия, позволяющая «увидеть невидимое».

Очевидно, что применение ультразвука не могло ограничиться лишь техническими приложениями. В 1925 г. выдающийся французский физик Поль Ланжевен, занимавшийся оснащением флота эхолотами, исследовал прохождение ультразвука через мягкие ткани человека и воздействие ультразвуковых волн на организм человека. Тот же С.А.Соколов в 1938 г. получил первые томограммы руки человека «на просвет». А в 1955 г. английские инженеры Ян Дональд и Том Браун построили первый в мире УЗ-томограф, в котором человек погружался в ванну с водой, а оператор с УЗ-излучателем и УЗ-приёмником должен был обходить объект исследований по кругу. Они же впервые применили к человеку принцип эхолокации и получили не просветную, а отражательную томограмму.

Следующие пятьдесят лет (практически до наших дней) можно охарактеризовать как эпоху проникновения ультразвука во всевозможные области технической и медицинской диагностики и применения ультразвука в технологических областях, где он позволяет сделать зачастую то, что невозможно в природе. Но об этом подробнее.

Эхолокация в технике

Простейший вид эхолокации – одномерный. Импульс напряжения подаётся на излучающий элемент (генератор), тот направляет в среду короткий акустический импульс. Если на пути звуковой волны встречается препятствие (граница раздела слоёв с разными акустическими свойствами, например, трещина в металле), то часть сигнала отражается и может быть принята датчиком, чаще всего размещаемым там же, где и излучатель. Сигнал преобразуется в электрический, усиливается и появляется на экране.

К принципу действия одномерного УЗ-локатора

Измеряя время запаздывания принятого импульса относительно излучённого τ и зная скорость звука в среде c , можно определить расстояние L до отражателя: L = c τ/2. Очевидно, что в реальных условиях приходится принимать меры к тому, чтобы эхолокатор не показывал слабые цели для исключения ложного срабатывания. Для этого существуют процедуры оценки минимального порогового уровня чувствительности обнаружения. Кроме того, разумно ограничиться некоторой зоной интереса по L , исключив из неё ближнюю зону, где всегда имеются мощные помехи, и дальнюю зону, где полезный сигнал становится сравним по амплитуде с шумами. Если к этому добавить управление усилением принятого сигнала (причём его можно сделать зависящим от дальности, чтобы скомпенсировать ослабление сигнала с расстоянием), мы получим универсальный эхолокатор, который с небольшими вариациями может быть использован для решения множества задач технической и медицинской диагностики.

Пионеры ультразвуковой локации: Ф.Гальтон, А.Бем, С.А.Соколов, Т.Браун и Я.Дональд

В эхолокационной технике можно выделить несколько больших классов – уровнемеры, толщиномеры, эхолоты, дефектоскопы. Различаются они в основном алгоритмами использования получаемой акустической информации, тогда как основой для каждого из них по-прежнему является описанный выше одномерный эхолокатор. Например, если поставить УЗ-зонд (в котором находятся излучающий и приёмный элементы) на днище закрытой ёмкости с жидкостью, удастся измерить её уровень, не заглядывая в ёмкость, где может находиться ядовитая или огнеопасная субстанция. Если же нам неизвестны акустические свойства этой жидкости, можно поставить второй, так называемый опорный, зонд на боковую стенку этой ёмкости и определять уровень жидкости по отношению времён запаздывания вертикального и горизонтального сигналов. Примером такого уровнемера является измеритель уровня одоранта природного газа (меркаптана) в ёмкости, которая всегда закрыта, да ещё и закопана в землю.

УЗ-приборы: слева – УЗ-уровнемер; справа вверху – УЗ-дефектоскоп для неразрушающего контроля маленьких деталей; внизу – УЗ-толщиномер

УЗ-толщиномеры применяются для непрерывных измерений толщины листа (стального, стеклянного) при производстве, а также толщины объекта, к которому имеется доступ лишь с одной стороны (например, толщины стенки ёмкости или трубы). Здесь зачастую приходится иметь дело с очень малыми задержками, поэтому для повышения точности измерений применяют зацикливание эхолокатора: первый принятый эхосигнал сразу же запускает передатчик для излучения следующего импульса и т.д., при этом измеряют не время задержки, а частоту запуска.

Эхолоты, развитие которых началось почти сто лет назад, используются сейчас на самых разнообразных объектах, от надводных и подводных военных кораблей до надувных лодок рыбаков-любителей. Применение компьютеров позволило не просто отображать на экран эхолота профиль дна, но и распознавать тип отражающего объекта (рыба, топляк, сгусток ила и т.п.). С помощью эхолотов составляются карты профиля шельфа, были обнаружены суточные колебания глубины расположения слоя планктона в океане.

Рельсовый УЗ-дефектоскоп АДС-02

Остродефектный рельс на изломе

Пожалуй, наиболее важным применением эхолокации в технике является неразрушающий контроль конструкций (металлических, бетонных, пластмассовых) для выявления в них дефектов, вызванных механическими нагрузками. В простейшем случае дефектоскоп – это эхолокатор, на экране которого отображается эхограмма. Перемещая УЗ-датчик по поверхности контролируемого изделия, можно обнаруживать трещины. Обычно дефектоскоп снабжается набором УЗ-преобразователей, позволяющих вводить ультразвук в материал под разными углами, и звуковой сигнализацией превышения порога отражённым эхосигналом.

Среди металлоконструкций наиболее важным объектом неразрушающего контроля являются железнодорожные рельсы. Несмотря на значительные успехи внедрения средств автоматики, на железных дорогах России наиболее распространён ручной контроль. Многоканальный эхолокатор устанавливается на съёмную тележку, которую толкает оператор. УЗ-датчики устанавливаются в лыжи, скользящие по поверхности катания рельсов. Для обеспечения акустического контакта на тележке устанавливаются баки с контактной жидкостью (летом – вода, зимой – спирт). И шагают тысячи операторов по всем железным дорогам, толкая тележки, в снег и дождь, в жару и мороз... Требования к конструкции аппаратуры высоки – приборы должны работать в диапазоне температур от –40 до +50 °С, быть пылевлагонепроницаемыми, работать от аккумулятора. Первые отечественные рельсовые дефектоскопы в СССР были созданы 50 лет назад проф. А.К.Гурвичем в Ленинграде. Развитие вычислительной техники дало возможность в последнее десятилетие создать автоматизированные дефектоскопы, позволяющие не только обнаружить дефект, но и записать всю эхограмму пройденного пути для просмотра информации, её хранения и дальнейшего анализа в специальных центрах. Один из таких приборов – АДС-02 – был создан сотрудниками нашего ИПФ РАН совместно с фирмой «Медуза» и выпускается серийно Нижегородским заводом им. М.Фрунзе. К настоящему времени более 300 приборов работают на российских железных дорогах, помогая обнаруживать в год по несколько тысяч так называемых острых дефектов, каждый из которых может стать причиной крушения. За применение современных компьютерных технологий дефектоскоп АДС-02 получил в 2005 г. 1-е место на международном конкурсе разработчиков встраиваемых систем в Сан-Франциско (США).

Статья подготовлена при поддержке компании «МегаЗабор». Если Вы решили приобрести качественный и надежный забор, который простоит многие годы, то оптимальным решением станет обратиться в компанию «МегаЗабор». Компания «МегаЗабор» занимается продажей и установкой заборов разной длинны высоты и сложности конструкции и уже успела зарекомендовать себя как качественный поставщик услуг. Более подробную информацию Вы сможете найти на сайте www.Megazabor.Ru.

«Ультразвук физика» - Применение инфразвука. Изучение поведения животных. Историческое использование инфразвука. Предсказание землетрясений. Летучая мышь. Не воспринимаются человеческим ухом. Медицина. Ультразвуковые волны влияют на растворимость вещества и в целом на ход химических реакций. Большие дозы – уровень звука 120 и более дБ дают поражающий эффект.

«Применение ультразвука» - Опыт 4. Ультразвук образует ветер. 1. Операции на головном мозге без вскрытия черепной коробки. Область исследования: акустика. Области применения ультразвука. Опыт 8. Ультразвук дегазирует жидкость. Данное явление можно использовать для очистки хлорированной воды. Опыт 1. Ультразвук уменьшает трение по колеблющейся поверхности.

«Воздействие ультразвука» - Эндокринной системе. Механические колебания. Общетонизирующее действие. Спазмолитическое действие. Сердечно-сосудистой системе. Обезболивающее действие. Историческое использование инфразвука. Противовоспалительное действие. Нервной системе. Планктоны. Ультразвук в небольших дозах оказывает положительное действие на организм человека.

«Ультразвуковой датчик» - Герц (Гц, Hz) – единица измерения частоты, соответствует одному циклу в секунду. Движения: Скольжение Вращение Покачивание Давление. Физические основы ультразвука. Что такое ультразвук? Отражение звука. Взаимодействие волн. Частота излучения. Сила (амплитуда) каждой отраженной волны соответствует яркости отображенной точки.

«Ультразвук в медицине» - Ультразвуковое исследование. Рождение ультразвука. Ультразвук в помощь фармакологам. Лечение ультразвуком. Ультразвук в медицине. Вредно ли ультразвуковое исследование. Ультразвуковые процедуры. Детская энциклопедия. Вредно ли ультразвуковое лечение. План.

«Ультразвуковое исследование» - С помощью ультразвукого эффекта Доплера изучают характер движения сердечных клапанов измеряют скорость кровотока. Ульразуковой пилинг кожи лица. Спектральный Допплер Общей Каротидной Артерии. Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

Система ориентирования в пространстве

Направление:

Исполнитель : ученик 10 класса Дмитрий Тюкалов

Руководитель : Аминов Евгений Витальевич

учитель физики

Введение. 3

Глава I. Эхолокация. 4

I.1. История. 4

I.2. Принципы эхолокации. 4

I.3. Способы применения. 5

I.5. Принцип замеров. 12

I.6. Виды приборов. 13

Глава II. Arduino. 14

II.1. Применение. 14

II.2. Язык программирования. 14

II.3. Отличия от других платформ. 14

Заключение. 18

Список литературы и Интернет-источников. 18

Приложение. 19


Введение

В наше время люди постепенно разрабатывают устройства, которые облегчают нашу жизнь. И конечно без ориентирования они бы были неполноценны. В данной работе мы подробно рассмотрим один из видов ориентирования - эхолокация. Объектом моего исследования является ориентирование по способу эхолокации, который мы рассматриваем на примере автономного устройства, созданного на базе Ардуино. Проблема же состоит в том удобен и эффективен ли он.

Целью данной работы стало: выявление плюсов и минусов ориентирования по принципу эхо локации.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Изучить суть явления.

2. Исследовать автономное устройство Ардуино.

3. Создание устройства.

4. Написание программы.

5. Тестирование в различных условиях.

6. Найти достойное применение.

Данная проблема не разрабатывалась в прошлом , но само явление эхо локации было рассмотрено Пьером Кюри в 1880 г., а применение её в жизни стало возможны благодаря Александру Бему в 1912 году. Он создал первый в мире эхолот.

Я предполагаю , что ориентирование по принципу эхо локации весьма эффективно и сможет помогать людям в опасных для жизни ситуациях.

Глава I. Эхолокация

Я бы хотел начать из далека, а именно с определения:

Эхолокация (эхо и лат. locatio - «положение») - способ, при помощи которого положение объекта определяется по времени задержки возвращений отражённой волны. Если волны являются звуковыми, то это звуколокация, если радио - радиолокация.

I.1. История

Эхолокация как явление в робототехнике и механике пришло из биологии. Её открытие связано с именем итальянского естествоиспытателя Ладзаро Спалланцани. Он обратил внимание на то, что летучие мыши свободно летают в абсолютно тёмной комнате, не задевая предметов. В своём опыте он ослепил несколько животных, однако и после этого они летали наравне со зрячими. Коллега Спалланцани Ж. Жюрин провёл другой опыт, в котором залепил воском уши летучих мышей, - и зверьки натыкались на все предметы. Отсюда учёные сделали вывод, что летучие мыши ориентируются по слуху. Однако эта идея была высмеяна современниками, поскольку ничего большего сказать было нельзя - короткие ультразвуковые сигналы в то время ещё было невозможно зафиксировать.

Впервые идея об активной звуковой локации у летучих мышей была высказана в 1912 году Х. Максимом. Он предполагал, что летучие мыши создают низкочастотные эхолокационные сигналы взмахами крыльев с частотой 15 Гц.

Об ультразвуке догадался в 1920 году англичанин Х. Хартридж, воспроизводивший опыты Спалланцани. Подтверждение этому нашлось в 1938 году благодаря биоакустику Д. Гриффину и физику Г. Пирсу. Гриффин предложил название эхолокация для именования способа ориентации летучих мышей при помощи ультразвука.

I.2. Принципы эхолокации

Эхолокация начинается с ультразвука, так узнаем же о нём побольше.

Как и многие другие физические явления, УЗ-волны обязаны своим открытием случаю. В 1876 г. английский физик Фрэнк Гальтон, изучая генерацию звука свистками особой конструкции (резонаторов Гельмгольца), носящими теперь его имя, обнаружил, что при определённых размерах камеры звук перестаёт быть слышимым. Можно было предположить, что звук просто не излучается, однако Гальтон сделал вывод, что звук не слышен потому, что его частота становится слишком высокой. Кроме физических соображений, в пользу этого вывода свидетельствовала реакция животных (прежде всего собак) на применение такого свистка.

Очевидно, что излучать ультразвук с помощью свистков можно, но не слишком удобно. Ситуация изменилась после открытия пьезоэффекта Пьером Кюри в 1880 г., когда появилась возможность излучать звук, не продувая резонатор потоком воздуха, а подавая на пьезокристалл переменное электрическое напряжение. Однако, несмотря на появление достаточно удобных источников и приёмников ультразвука (тот же пьезоэффект позволяет преобразовывать энергию акустических волн в электрические колебания) и на огромные успехи физической акустики как науки, связанной с такими именами, как Уильям Стрэтт (лорд Рэлей), ультразвук рассматривался в основном как объект для изучения, но не для применения.

I.3. Способы применения

Следующий шаг был сделан в 1912 г., когда всего через два месяца после гибели «Титаника» австрийский инженер Александр Бем создал первый в мире эхолот. Представьте себе, как могла измениться история! С этих пор и до настоящего времени УЗ-гидролокация остаётся незаменимым инструментом для надводных и подводных кораблей.

Ещё один принципиальный сдвиг в развитии УЗ-техники был сделан в 20-е гг. XX в.: в СССР были проведены первые эксперименты по прозвучиванию сплошного металла ультразвуком с приёмом на противоположном краю образца, причём регистрирующая техника была устроена так, что можно было получать двумерные теневые изображения трещин в металле, подобные рентгеновским (трубка С.А.Соколова). Так началась УЗ-дефектоскопия, позволяющая «увидеть невидимое».

Очевидно, что применение ультразвука не могло ограничиться лишь техническими приложениями. В 1925 г. выдающийся французский физик Поль Ланжевен, занимавшийся оснащением флота эхолотами, исследовал прохождение ультразвука через мягкие ткани человека и воздействие ультразвуковых волн на организм человека. Тот же С.А.Соколов в 1938 г. получил первые томограммы руки человека «на просвет». А в 1955 г. английские инженеры Ян Дональд и Том Браун построили первый в мире УЗ-томограф, в котором человек погружался в ванну с водой, а оператор с УЗ-излучателем и УЗ-приёмником должен был обходить объект исследований по кругу. Они же впервые применили к человеку принцип эхолокации и получили не просветную, а отражательную томограмму.

Следующие пятьдесят лет (практически до наших дней) можно охарактеризовать как эпоху проникновения ультразвука во всевозможные области технической и медицинской диагностики и применения ультразвука в технологических областях, где он позволяет сделать зачастую то, что невозможно в природе. Но об этом подробнее.

Пожалуй, наиболее важным применением эхолокации в технике является неразрушающий контроль конструкций (металлических, бетонных, пластмассовых) для выявления в них дефектов, вызванных механическими нагрузками. В простейшем случае дефектоскоп – это эхолокатор, на экране которого отображается эхограмма. Перемещая УЗ-датчик по поверхности контролируемого изделия, можно обнаруживать трещины. Обычно дефектоскоп снабжается набором УЗ-преобразователей, позволяющих вводить ультразвук в материал под разными углами, и звуковой сигнализацией превышения порога отражённым эхосигналом.

Среди металлоконструкций наиболее важным объектом неразрушающего контроля являются железнодорожные рельсы. Несмотря на значительные успехи внедрения средств автоматики, на железных дорогах России наиболее распространён ручной контроль. Многоканальный эхолокатор устанавливается на съёмную тележку, которую толкает оператор. УЗ-датчики устанавливаются в лыжи, скользящие по поверхности катания рельсов. Для обеспечения акустического контакта на тележке устанавливаются баки с контактной жидкостью (летом – вода, зимой – спирт). И шагают тысячи операторов по всем железным дорогам, толкая тележки, в снег и дождь, в жару и мороз... Требования к конструкции аппаратуры высоки – приборы должны работать в диапазоне температур от –40 до +50 °С, быть пылевлагонепроницаемыми, работать от аккумулятора. Первые отечественные рельсовые дефектоскопы в СССР были созданы 50 лет назад проф. А.К.Гурвичем в Ленинграде. Развитие вычислительной техники дало возможность в последнее десятилетие создать автоматизированные дефектоскопы, позволяющие не только обнаружить дефект, но и записать всю эхограмму пройденного пути для просмотра информации, её хранения и дальнейшего анализа в специальных центрах. Один из таких приборов – АДС-02 – был создан сотрудниками нашего ИПФ РАН совместно с фирмой «Медуза» и выпускается серийно Нижегородским заводом им. М.Фрунзе. К настоящему времени более 300 приборов работают на российских железных дорогах, помогая обнаруживать в год по несколько тысяч так называемых острых дефектов, каждый из которых может стать причиной крушения. За применение современных компьютерных технологий дефектоскоп АДС-02 получил в 2005 г. 1-е место на международном конкурсе разработчиков встраиваемых систем в Сан-Франциско (США).

УЗ-толщиномеры применяются для непрерывных измерений толщины листа (стального, стеклянного) при производстве, а также толщины объекта, к которому имеется доступ лишь с одной стороны (например, толщины стенки ёмкости или трубы). Здесь зачастую приходится иметь дело с очень малыми задержками, поэтому для повышения точности измерений применяют зацикливание эхолокатора: первый принятый эхосигнал сразу же запускает передатчик для излучения следующего импульса и т.д., при этом измеряют не время задержки, а частоту запуска.

Эхолоты, развитие которых началось почти сто лет назад, используются сейчас на самых разнообразных объектах, от надводных и подводных военных кораблей до надувных лодок рыбаков-любителей. Применение компьютеров позволило не просто отображать на экран эхолота профиль дна, но и распознавать тип отражающего объекта (рыба, топляк, сгусток ила и т.п.). С помощью эхолотов составляются карты профиля шельфа, были обнаружены суточные колебания глубины расположения слоя планктона в океане.

В отличие от рентгеновских и ЯМР-томографов (а также первых «просветных» УЗ-приборов) современные приборы для УЗ-исследования органов (УЗИ) работают в таком же режиме, как и их аналоги в технической диагностике, т.е. обнаруживают границы раздела сред с различными акустическими характеристиками. Различие между свойствами мягких тканей не превышает 10%, и лишь костные ткани дают почти 100%-ное отражение. Таким образом, почти всё богатство информации, получаемой медицинскими УЗ-приборами, заключается в анализе этих слабых сигналов.

Одно из первых применений одномерной локации в медицине – УЗ-эхоэнцефалоскоп. Идея его проста: получают эхограммы внутричерепных структур при зондировании головы в височной области слева и справа. Появление внутричерепных повреждений (гематом, опухолей) приводит к нарушению симметрии эхограмм, и таких пациентов легко выделить и направить на более детальное и дорогостоящее обследование.

Применение ультразвука в кардиологии привело к развитию важной для УЗИ технологии – представления эхограммы в координатах глубина-время, когда амплитуда сигнала представляется уровнем серого. Это позволило начать систематические неинвазивные исследования движения внутренних структур сердца и крупных сосудов и получить новую важную физиологическую информацию. Например, было доказано, что поперечное сечение аорты не меняется, как предполагали раньше врачи.

Первые кардиологические приборы были одномерными, и для исследования различных структур приходилось поворачивать датчик под разными углами. Впоследствии удалось автоматизировать этот процесс, и современные УЗ-приборы стали эхотомографами, т.е. позволяют получать двумерные сечения исследуемой области организма и наблюдать за быстрым движением структурных элементов сердца – клапанов, перегородок. В случае же неподвижных структур всё гораздо проще. Первые УЗ-томограммы были получены, когда не было сложной электроники и компьютеров, правда, для этого приходилось погружать человека в ванну с водой и обходить с одномерным датчиком по кругу. Сейчас применяют методы интерференции колебаний от множества маленьких элементов, позволяющих управлять направлением УЗ-пучка. Такое УЗ-исследование (УЗИ) органов и тканей стало обычной процедурой, несопоставимо более дешёвой, чем другие виды томографии.

В то же время остались частные применения одномерной УЗ-локации. Одним из них является измерение толщины жировой подкожной прослойки, что позволяет оценивать показатель степени ожирения, например, BFI. Этот метод реализован в приборе Bodymetrix2000 – совместной российско-американской разработке, который сейчас применяется в салонах красоты и фитнес-клубах по всему миру.

Пожалуй, наиболее интересными из сложных современных приборов для УЗ-медицинской диагностики являются трёхмерные системы. В этих системах УЗ-пучок поворачивается в двух взаимно перпендикулярных направлениях, а принятые эхосигналы обрабатываются так, чтобы получить изображение сплошной поверхности объекта, находящегося внутри организма человека, будь то внутренний орган или эмбрион. Если сбор и обработка информации происходят достаточно быстро, то можно наблюдать за движением объекта в реальном масштабе времени, например, изучать поведение ещё не родившегося ребёнка, его реакции и т.п., Пожалуй, единственный вопрос здесь – обеспечение безопасности, т.е. поддержание интенсивности УЗ-излучения на уровне 50–100 мВт/см2.

  • Читать: Коммуникация и язык животных
  • Читать дополнительно: Слух. Слуховой анализатор

Сущность эхолокации

Под словом «локация» понимается определение местоположения предметов, измерение их координат и параметров движения. В живой природе используются разнообразные формы и способы локации. У человека и большинства животных определение местоположения окружающих предметов осуществляется благодаря анализаторным системам дистантного действия, в основном зрительной и слуховой, причем эти системы в функциональном отношении у некоторых животных доведены до высочайшего совершенства. Достаточно вспомнить о необычайной остроте зрения у дневных хищных птиц или точности звуковой пеленгации добычи совами.

Для обнаружения объектов окружающей среды некоторые животные используют и другие виды информации. Глубоководные кальмары, например, помимо обычных органов зрения наделены особыми рецепторами, способными улавливать инфракрасные лучи, а своеобразные органы - «термолокаторы» - гремучих змей служат для поисков добычи, воспринимая тепловое излучение живых существ и реагируя на разность температур в тысячную долю градуса.

Приведенные примеры, несмотря на их разнообразие, представляют собой различные варианты так называемой пассивной локации, когда обнаружение объектов осуществляется только путем приема той энергии, которую непосредственно излучают или переизлучают сами исследуемые объекты.

Сравнительно недавно казалось, что более или менее чувствительными органами дистантного обнаружения как средствами пассивной локации ограничиваются возможности живой природы.

В самом начале XX в. человечество было вправе гордиться тем, что оно создало принципиально новый, активный способ локации, при котором невидимая прежде цель облучается потоком электромагнитной или ультразвуковой энергии и обнаруживается с по- мощью той же энергии, но уже отраженной от цели. Радио- и гидролокационные станции - эти приборы активной локации - пришли на смену различного рода «слухачам» - приборам пассивного обнаружения - ив настоящее время получили огромное развитие в решении народнохозяйственных, военных и космических проблем. В то же время несомненно, что принципы радиолокации подсказали биологам путь к решению вопроса о формах пространственной ориентации у некоторых животных, которые невозможно было объяснить функционированием хорошо известных анализаторов дистантного действия.

В результате кропотливых исследований с помощью новой электронной аппаратуры удалось установить, что ряд животных использует методы активной локации с применением двух видов энергии - акустической и электрической. Электрической локацией пользуются некоторые тропические рыбы, например мор-мирус, или водяной слоник, тогда как активная акустическая локация открыта у нескольких представителей наземных и водных позвоночных, стоящих на разных уровнях эволюционного развития.

Акустическая локация служит средством обнаружения объектов благодаря звуковым волнам, распространяющимся в данной среде.

По аналогии с радиолокацией различают две формы акустической локации: пассивную, когда обнаружение осуществляется только путем приема той энергии, которую непосредственно излучают или переизлучают сами исследуемые объекты, и а к-т и в н у ю, при которой анализ объекта основан на предварительном облучении его звуковыми сигналами с последующим восприятием этой же энергии, но уже отраженной от него. Первая форма акустической локации издавна обозначается как слух или слуховое восприятие, и звуковые колебания принимаются слуховым анализатором.

Вторую форму, т. е. активную акустическую локацию, американский ученый Д. Гриффин, впервые открывший ее у летучих мышей, назвал эхолокацией. Со временем термины «эхолокация», «акустическая локация» и «акустическая ориентация» стали в какой-то степени синонимами и широко используются в биологической литературе при описании активной формы локации у животных. Правда, в последние годы делаются попытки использовать термины «акустическая локация», «пассивная локация» для обозначения функций слуховой системы у сов, которые с высокой точностью производят локализацию местоположения своей добычи на слух во время ночной охоты (Ильичев, 1970; Payne, 1971). Этим хотят подчеркнуть ту огромную роль, которую играет слух в пищевом поведении сов, и сопоставить способы ориентации этих птиц с таковыми у летучих мышей, хотя это сопоставление неправомочно, ибо последние поднялись на следующую, качественно но- вую ступень акустической локации, применив активное зондирование пространства собственными акустическими сигналами. Прежде чем перейти к характеристикам эхолокации, коротко остановимся на основных понятиях и определениях из области акустики, необходимых для понимания физических раздражителей слухового рецепторного аппарата.

Э.Ш.АИРАПЕТЬЯНЦ А.И.КОНСТАНТИНОВ. ЭХОЛОКАЦИЯ В ПРИРОДЕ. Изд-во «НАУКА», ЛЕНИНГРАД, 1974