Автомат включения насоса для воды своими руками. Датчики уровня воды для управления насосом. Рабочий механизм датчика. Как ведет себя конструкция во включенном виде

Бесперебойное водоснабжение частного дома - задача вполне выполнимая. Для этого необходимо автоматизировать процесс восполнения расходуемой воды в резервуарах. Поскольку большинство качественных автоматов довольно дорогие, а доступные по цене не удовлетворяют требованиям качества, то можно сделать самодельное устройство для регулирования подачи воды глубинным насосом из скважины или колодца.

Обычно вода из скважины поступает в накопитель, из которого через подключенные краны она используется по назначению. По мере расходования жидкости автоматически должен включаться насос до наполнения ёмкости и своевременно отключать его, предотвращая переполнение или разрыв.

Для этой цели можно использовать герконы, которые представляют собой герметический контакт, управляемый магнитом. Такие контакты обычно применяются в теле- и радиоаппаратуре. Они надежны и долговечны. Герконы имеют обычно три переключающихся контакта. Но можно использовать и экземпляры с двумя выводами, просто нужно приобретать два различных геркона - имеющими нормально - замкнутые и нормально - разомкнутые контакты.

Пускатель насоса устанавливается в удобном месте помещения. На его вход подводится напряжение от сети, а на выходной контакт подключается электрический насос. Внутри резервуара к его крышке закрепляется пластиковая трубка, внутри которой помещается цилиндрический поплавок с закрепленным на нем магнитиком. В качестве поплавка можно использовать кусок пенопласта. По мере накопления воды в резервуаре, поплавок поднимается вверх, а при понижении уровня воды опускается.


На пластиковой трубке закрепляются герконы - верхний, размыкающий сеть, на максимальном уровне воды, нижний, замыкающий, на минимальном уровне. При наборе воды, магнитик на поплавке поднимается до уровня верхнего геркона. Под влиянием магнитного поля геркон срабатывает, отключая насос от сети - набор воды прекращается. При расходе воды, магнитик опускается до нижнего геркона, и тот замыкает цепь - насос включается и качает воду из скважины до необходимого уровня. Благодаря надежности герконов, система автоматического регулирования работы погружного насоса работает безотказно.

Сборка автомата управления глубинным насосом в помещениях с низким потолком.

Если накопительный резервуар установлен в помещение таким образом, что расстояние от его верней кромки до потолка слишком мало, то установка автомата управления насосом производится другим способом.

Поплавок, опущенный в ёмкость, соединяется шпагатом через систему направляющих шкивов с магнитом. В качестве шкивов можно использовать шпульки от швейной машинки. Пластиковую трубку с магнитиком размещают вне резервуара, в любом удобном месте, но так, чтобы не возникало препятствий для свободного перемещения шпагата. При этом шпагат должен быть слегка натянут, для чего можно добавить маленькие грузики к магниту.


К наружной поверхности трубки прикрепляются герконы на нужной высоте, соответствующей уровню включения и отключения насоса. При этом размыкающий сеть геркон окажется ниже замыкающего.

Управление работой насоса обычным включателем.

В некоторых случаях организация автоматического управления насосом при помощи герконов может оказаться сложной или невозможной. В этом случае существует вариант автоматизации включения и отключения системы с использованием простого настенного выключателя электричества. При своей простоте данный вид управления насосом менее надежен и не долговечен. Многое зависит и от качества самого электровыключателя.


1. В накопительную ёмкость устанавливается поплавок (сантехнический или пенопластовый). К нему прикрепляется неметаллический стержень, который выводится наружу.

2. К внутренним стенкам резервуара крепится направляющая трубка, внутри которой с минимальным сопротивлением будет перемещаться вверх - вниз стержень от поплавка.

3. К стержню прикрепляется магнит, который будет менять положение контактов выключателя на "Вкл." или "Выкл.". При этом магнит должен быть достаточно мощным, чтобы его магнитное поле могло преодолеть силу сопротивления пружины внутри выключателя.

4. На клавише выключателя необходимо надежно закрепить металлическую пластинку или прочную проволоку, концах которой рекомендуется загнуть в виде усов - контактов.

5. Расходная ёмкость и выключатель крепятся на одну стену, причем выключатель располагается выше резервуара.

6. Для подключения насоса к выключателю фазный провод кабеля питания разрезается, и концы подсоединяются к контактам выключателя. Вилка кабеля вставляется в розетку.

Как работает этот тип автомата.

1. При расходовании воды из накопительной ёмкости ее уровень понижается, соответственно, магнит на стержне движется вниз. В тот момент, когда он достигает уровня нижнего контактного усика, тот резко притягивается к магниту, переводя выключатель в положение "Вкл.". Насос включается, начинается набор воды.

Без воды обойтись невозможно, а если у вас есть свое хозяйство или вы проживаете в частном доме то вам не обойтись без простой схемы управления насосом. Управление насосом должна работать хотя бы в двух режимах: дренаж – выкачивание воды из емкости, скважины или колодца и водоподъем - в режиме наполнения емкости. В случае наполнения водного резервуара возможен перелив, а в случае выкачивания воды из него насос может попасть под сухой ход и сгореть. Для избегания этих проблем и предназначена любая схема управления насосом.

В разработке применены два датчика: короткий стальной прут контролирует максимально разрешенный уровень воды и длинный металлический прут датчик минимального уровня. Сама резервуар металлический и подключен к минусовой шине. Если емкость сделана из диэлектрического материала тогда допускается применять дополнительный стальной прут во всю длину емкости. В случае контакта с водой длинным датчиком и с коротким датчиком, логический уровень на выводах микросхемы К561ЛЕ5 меняется с высокого на низкий, изменяя режим работы насоса.


Управление насосом схема на К561ЛЕ5

В случае если уровень воды ниже обоих датчиков, на десятом выводе микросхемы логический ноль. При плавном повышении уровня воды даже в случае, если вода будет контактировать с длинным датчиком, все равно будет логический ноль. Как только уровень воды дойдет до короткого датчика, появится логическая единица и транзистор включит реле управления насосом, который начнет откачивает воду из емкости.

Когда, уровень воды упадет, и короткий датчик не будет соприкасаться с водой, то на выводе 10 все равно будет логическая единица и насос продолжает работать. Но если уровень воды опустится ниже длинного датчика, то появится логический ноль и насос прекратит свою работу. Тумблер S1 используется для обратного действия.

В этой схеме Датчик уровня воды в резервуаре собран так, что контакты SF1 замыкаются, если уровень воды окажется ниже минимального, a геркона SF2 - замыкаются только тогда, когда вода достигнет максимального уровня.

Эту радиолюбительскую разработку я использовал на даче, для контроля и поддержания определенное количества уровня жидкости в поливальном баке.

Любой автомат подачи воды начинается с датчика. Чаще всего используют контактные датчики, погружаемые в воду и измеряющие сопротивление воды. Мне кажется что такой способ имеет серьезные недостатки. Вода постоянно находится под током. Да, этот ток мизерный, но каким бы он не был, он приводит к электрохимическим процессам в воде. Это не только усиливает коррозию металлического резервуара, контактов датчика, но и увеличивает в воде содержание солей металлов, что может быть неполезно для организма, конечно, кроме случая использования серебряных контактов и емкости из пищевой пластмассы. В таком случае добавление в воду ионов серебра может оказать и некоторую пользу организму. Но все же предпочтительно отказаться от Датчик уровня воды, используемый в этой разработке, представляет собой пластмассовую трубу, опущенную вертикально в бак с водой. Внутри трубы свободно перемещается поплавок, вырезанный из пенопласта, на котором закреплен магнит, взятый от старого динамика. Магнит расположен на поверхности поплавка и с водой не контактирует. Чтобы поплавок не выпадал из трубы при низком уровне воды нижнюю часть трубы перекрывают перемычкой, сделанной из корпуса старой шариковой авторучки (в стенках трубы напротив друг друга сверлят отверстия и с некоторым трением вставляют туда авторучку).


Управление насосом схема автомат

Снаружи на трубе закрепляют два геркона, место их установки подбирают экспериментально исходя из особенностей конкретного бака. Один геркон должен замыкаться под действием постоянного магнита поплавка при опустошении бака до минимального уровня, при котором нужно включать электронасос для пополнения бака. Второй геркон устанавливается в таком месте трубы, где он замыкается под действием магнита поплавка при максимальном заполнении бака, когда нансос нужно выключить. Для повышения надежности можно в месте установке каждого геркона установить несколько герконов, расположив их по кругу трубы и подключив параллельно друг другу. Дело в том, что в процессе движения датчик может поворачиваться, а геркон более чувствителен к перпендикулярному воздействию на него магнитного поля, поэтому при некотором положении магнита он может и не срабатывать.

Еще нужно учесть что расстояние между герконом (герконами) нижнего и верхнего уровня на трубе должно быть значительным чтобы ни в каком положении поплавка магнитное поле не могло приводить к замыканию обоих герконов (обоих групп герконов), так как одновременное замыкание герконов нижнего и верхнего уровня приводит к замыканию в цепи питания схемы. Герконы и идущие к ним провода необходимо тщательно изолировать от воды используя герметик.

Схема электронной части показана на рисунке выше. На элементах D1.1 и D1.2 построен триггер Шмитта с относительно небольшим входным сопротивлением (зависит от величины R1). Небольшое входное сопротивление приводит к минимальному уровню наводок на провод, идущий от геркона и снижает склонность схемы к повреждению статическим электричеством. Как известно, триггер Шмитта принимает состояние соответствующее состоянию на его входе. Входом являются соединенные вместе выводы элемента D1.1. Если на этот вход подать логическую единицу, то на выходе элемента D1.2 так же будет логическая единица, но если после этого вход триггера отключить, то он так и останется в единичном состояния за счет того, что на его вход будет поступать логическая единица с его же выхода через резистор R1. Аналогично и с установкой в нулевое состояние.

Геркон SG1 установлен в нижней части трубы и отвечает за включение насоса для наполнения бака. Геркон SG2 располагается в верхней части трубы и отвечает за выключение насоса. Один или другой герконы замыкаются только в верхнем и нижнем положении уровня воды. В среднем положении магнит не действует на них и они не замкнуты. Предположим схему включили, а уровень воды был средним. Триггер Шмитта при включении питания может установиться произвольно в любое положение. Если он установился в положение единицы, то включается насос и накачивает воду в бак до тех пор, пока не замкнется геркон SG2. Если триггер Шмитта установился в нулевое положение, то насос не включается до тех пор пока уровень воды не опустится до момента замыкания SG1. Предположим, уровень воды в баке минимальный. Тогда замыкается геркон SG1 и через него на вход триггера Шмитта поступает напряжение высокого уровня. На выходе D1.2 устанавливается логическая единица.

Соответственно, единица будет и на выходе D1.4. Транзистор VT3 открывается и подает питание на реле К1, если переключатель S1 находится в положении «АВТ», то это приведет к включению электронасоса. В таком состоянии схема будет находится до тех пор, пока поплавок не поднимется по трубе на столько, что его магнит замкнет геркон SG2. Теперь вход триггера Шмитта соединен с общим минусом, то есть, на нем низкий уровень. Соответственно низкий уровень будет и на выходе D1.2 и D1.4. Транзистор VT3 закрывается и если S1 в положении «АВТ» его контакты выключают электронасос. Светодиоды HL1 и HL2 служат для индикации состояния системы. Если насос включен горит HL1, а если выключен - HL2. По состоянию светодиодов можно следить за степенью заполнения резервуара и работой электронасоса. Переключатель S1 служит для перехода на ручное или автоматические управление. S1 -это тумблер с нейтральным положением. В нейтральном положении («ВЫК») электронасос выключен независимо от состояния датчиков.

В положении «ВК» насос включен независимо от состояния датчиков. А в положении «АВТ» происходит автоматическое управление насосом. Положения «ВК» и «ВЫК» нужны при проведении техобслуживания или ремонта водопровода, а так же, для ручного управления при неисправности датчиков. Микросхема К561ЛЕ5 или К561ЛА7 - логика работы входов инверторов не имеет значения, входы соединены вместе. Можно использовать любую микросхему серии К561, К176 или CD с числом инверторов не менее четырех. Например, К176ЛЕ5, К176ЛА7, К561ЛН2. Электромагнитное реле К1 с обмоткой на 12V и контактами на 230V при токе до ЗА. Можно использовать любое аналогичное реле или выбрать в зависимости от мощности насоса. Если мощность насоса не более 200W можно использовать реле КУЦ-1 от старого телевизора.

Недавно наткнулся в интернете на один видеоролик, где воплотили мою детскую мечту в реальность На видео продемонстрировали, как можно собрать устройство автоматического наполнения емкости водой. Всю работу очень наглядно продемонстрировали, однако схему не показали.

Дело в том, что в детстве в летнее время мне часто приходилось поливать огород и у меня всегда появлялись идеи по автоматизации данного процесса, но воплотить в реальность свои мысли так и не получилось. Сегодня я исполню часть своей мечты, правда, пока только теоретически.

Представим такую ситуацию: у вас на даче или дома есть емкость с водой, для полива огорода или еще для каких-то целей. В эту емкость вы закачиваете воду с помощью насоса. Чтобы закачать воду, каждый раз приходится включать насос и следить пока емкость не заполнится водой. Заполнение емкости водой можно очень легко и достаточно дешево автоматизировать.

Ниже представлена структурная картинка нашего устройства.

Для автоматизации наполнения емкости водой нам придется немного доработать емкость. На верхней части бочки устанавливается стержень высотой не менее глубины емкости, на котором закрепляются два геркона. К стержню также крепится подвижный шток с поплавком, который перемещается в зависимости от уровня воды в емкости. На штоке закреплен постоянный магнит, для управления герконами.

На следующей картинке можно увидеть пример выполнения стержня и подвижного штока.

А сейчас самое интересное: схема автоматического наполнения емкости водой.

Для реализации данного устройства нам понадобится автоматический выключатель для защиты насоса, электромагнитный контактор для включения и отключения насоса и два геркона (контакт магнитоуправляемый герметизированный) для управления контактором.

Нижний геркон должен быть замыкающий, верхний – размыкающий. К примеру, нам вполне подойдет геркон МКС-27103, т.к. он имеет переключающий контакт. Для сигнализации нижнего уровня в схеме используется нормально разомкнутый контакт, для сигнализации верхнего уровня – нормально замкнутый контакт геркона. В момент когда уровень воды в емкости достигнет критического значения, магнит расположится в одном уровне с нижним герконом, который под действием магнитного поля переключит контакт и тем самым отправит сигнал на включение насоса. После этого поплавок начнет подниматься до верхнего уровня, где верхний геркон отключит насос.

В данной схеме не реализован ручной режим, хотя следовало бы предусмотреть на случай выхода из строя наших уровнемеров. Проще всего взять кнопку с фиксацией для ручного управления насосом. Я думаю, как включить кнопку в полученную схему, у вас не составит труда.

Разумеется можно купить готовые уровнемеры и не изобретать велосипед, тем боле что промышленностью они выпускаются. Однако, один такой уровнемер вам обойдется не менее 30$, а один геркон МКС-27103 стоит 2-3$.

Вот так можно сделать автоматическое наполнение емкости водой. Еще у меня идея была, чтобы с этой емкости вода уходила на полив (например помидоров, огурцов) через дренажные трубки. Возможно в теплицах так и делают.

Надеюсь и у меня когда-нибудь появится дача, где я смогу воплотить полностью свою мечту, не потому что я люблю в огороде копаться, просто я люблю, чтобы за меня другие работали, я имею ввиду устройства

Надёжное водоснабжение – неотъемлемая часть жилого дома, общественного здания, производственного помещения. Но вопросы водоотведения важны не меньше. Чтобы поддерживать надлежащий уровень комфорта на объекте и повысить долговечность строительных конструкций, необходимо выполнять аварийную откачку воды, а также в любых условиях обеспечивать работоспособность системы дренажа и канализации, не допуская подтоплений и переливов. Именно для этого трудятся «бойцы невидимого фронта» – фекальные и дренажные насосы, которые самостоятельно работают где-то на приусадебном участке или в недрах подсобных помещений. Автоматика для дренажного насоса делает оборудование по-настоящему практичным и максимально эффективным.

Дренажный насос ещё называют «насосом для грязной воды», так как он может перекачивать жидкости, содержащие большое количество твёрдых частиц. В поверхностном или погружном исполнении это оборудование незаменимо для перекачки воды из резервуаров, которые нуждаются в поддержании «уровня»: котлованов, приямков, скважин, аккумулирующих ёмкостей, коллекторов, крупных сточных труб, сливных ям и т.д.

Каскад из двух насосов с поплавковыми выключателями и пультом управления

Такие приборы помогут защитить уязвимые помещения, которые периодически подвергаются затоплению (подвалы, погреба, цокольные этажи). Также дренажные насосы применяют для обслуживания (чистить, отводить лишнюю воду) искусственных водоёмов с грунтовым дном, они позволяют без проблем качать воду для полива сельхозугодий из естественных источников – рек и озёр.

Важно! Способность нагнетать и транспортировать жидкости с механическими включениями вовсе не означает, что дренажный насос не будет качать чистую воду. Нередко его используют для заполнения накопительных ёмкостей, например при реализации двухступенчатой автономной системы водоснабжения коттеджа.

Основные функции автоматики

Главная задача автоматики для дренажных насосов – включать и отключать насос при достижении заданных условий, благодаря чему появляется возможность не просто принудительно осушать и набирать ёмкости, а поддерживать необходимый безопасный уровень жидкости без участия домовладельца.

Насосы – дорогостоящие устройства. Они «не любят» работать без воды, которая, будучи перекачиваемой рабочей средой, также играет немаловажную роль в смазке некоторых движущиеся частей и охлаждении оборудования. Сухой ход для дренажного насоса так же вреден, как и для любого другого прибора. Практика показывает, что невозможно быть на сто процентов уверенным, что этого не случится, даже если уровень в источнике/резервуаре активно восполняется. Избежать таких ситуаций позволяет автоматика, которая в нужный момент отключает питание.

Вариант комплектации станции управления дренажным насосом

Автоматика для дренажного насоса – не просто выключатель. Её нужно рассматривать как сложное многокомпонентное устройство, так называемый «пульт управления», который помимо прочего защищает силовое оборудование от:

  • короткого замыкания;
  • перепада напряжения (от повышенного и слишком низкого);
  • тока утечки (в том числе человека от поражения током);
  • обрывов фазного провода и перекоса фаз (для устройств на 380 вольт);
  • повышения силы тока (при заклинивании рабочих колёс);
  • подгорания/залипания контактов и клемм.

В продаже имеются полностью готовые пульты, к которым нужно только подсоединить необходимые датчики и произвести программирование. При наличии опыта можно и самим на DIN-рейке отдельного щитка собрать функциональный управляющий блок.

Важно! Устройства, контролирующие работу дренажных насосов, позволяют включать/выключать и другие электрозависимые приборы, например ТЭНы, а также при помощи звукового зуммера или лампы сигнализировать о состоянии оборудования и аварийных ситуациях.

Как автоматизировать работу дренажного насоса

Управление дренажным насосным оборудованием всегда осуществляется по изменению уровня жидкости. Есть несколько вариантов устройств, но все они функционируют путём подачи или отключения питания (цепь разрывается или замыкается). Рассмотрим самые распространённые решения для дренажных приборов.

Способы применения поплавковых выключателей

Универсальное устройство, которое позволяет управлять насосами, когда необходимо откачивать жидкость или наполнять резервуары. Поплавковый выключатель представляет собой небольшой герметичный бокс из пластика со стационарно подсоединённым трёх- или четырёхжильным кабелем длиной до 10 метров. Именно таким типом автоматики снабжены простые бытовые насосы, но «поплавок» можно купить и отдельно.

Устанавливают поплавковый выключатель погружением в перекачиваемую жидкость, его прикрепляют к стенке ёмкости или фиксируют на силовом кабеле насоса. Чтобы более точно выставить диапазон рабочего уровня, на провод выключателя надевается и фиксируется скользящий груз. Меняя длину кабеля между выключателем и огрузкой, устанавливают оптимальные моменты срабатывания поплавка.

По сути, поплавковый выключатель является одновременно датчиком уровня и коммутирующим устройством. Работает он очень просто. Внутри корпуса с положительной плавучестью по специальному каналу свободно движется металлический шарик. При поднятии/опускании поплавка под углом около 45 градусов шар уходит в крайнее положение и ударяет по клавише двухпозиционного микровыключателя, который, в свою очередь, запитывает цепь, либо разрывает её.

Важно! Автоматика для дренажного насоса с микровыключателем в поплавке является недорогим решением, однако она не может обеспечить высокую точность контроля уровня. Кроме того, поплавковый выключатель не позволяет полностью осушать резервуары. Также ему свойственны проблемы с залипанием контактов, что, впрочем, решается применением вспомогательного контактора.

Схема устройства автоматики с тремя кондуктометрическими датчиками

Кондуктометрические датчики уровня

Принцип работы такой системы управления основан на электропроводности перекачиваемых жидкостей. Электроды из нержавеющей стали погружают в воду. Один из них, контрольный, должен всегда находиться в воде, а другие, сигнальные, монтируют на своих уровнях. Между ними по рабочей среде постоянно передаются малые токи. Если вода достигает нижнего сигнального датчика, то между ним и контрольным электродом появляется прослойка из воздуха (который не проводит электричество), что сразу же улавливает управляющий блок. А когда вода поднимается до верхнего датчика, воздух, наоборот, вытесняется жидкостью, и сигнальная цепь замыкается.

Важно! В качестве контрольного электрода может использоваться металлическая стенка резервуара или заземлённый корпус насоса.

Если поплавки могут работать как с пультом, так и самостоятельно, то такая автоматика обязательно комплектуется выносным блоком управления. Именно к нему поступают сигналы о состоянии слаботочных цепей внутри резервуара, а затем уже контролер отдаёт команду на срабатывание коммутирующего устройства (например, магнитного пускателя) для включения/выключения насоса. Кстати, многоэлектродные датчики могут управлять несколькими насосами, срабатывающими одновременно или поочерёдно, в том числе установленными в разных резервуарах.

В системе могут использоваться кондуктометрические датчики с несколькими электродами (для отслеживания большого количества уровней), но также возможны конфигурации, где функционирует только один электрод. Такая вариативность позволяет собрать автоматику для дренажного насоса своими руками, которая будет наиболее эффективной для конкретных условий. В любом случае кондуктометрические устройства управления надёжнее и намного точнее, чем системы контроля с поплавковыми выключателями.

Видео: автоматика для насоса

Для автоматизации многих производственных процессов необходимо контролировать уровень воды в резервуаре, измерение проводится при помощи специального датчика, подающего сигнал, когда технологическая среда достигнет определенного уровня. Без уровнемеров невозможно обойтись и в быту, яркий пример этому – запорная арматура бачка унитаза или автоматика для отключения насоса скважины. Давайте рассмотрим различные виды датчиков уровня, их конструкцию и принцип работы. Эта информация будет полезной при выборе устройства под определенную задачу или изготовлении датчика своими руками.

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.


Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.


Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.


Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).


Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.


Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.


Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Делаем датчик уровня воды в резервуаре своими руками

Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.


Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня — на замыкание, максимального — на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

  • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
  • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
  • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.