Теория игр применяется для. Основные понятия теории игр и игровых моделей

Для человека, не являющегося экспертом в политике, Брюс Буэно де Мескита из Университета Нью-Йорка делает удивительно точные событий. Ему удалось с точностью до нескольких месяцев предсказать уход со своих постов и Переверза Мушарафа. Он точно назвал приемника Аятоллы Хомейни на посту лидера Ирана за 5 лет до его смерти. На вопрос о том, в чем секрет, он отвечает, что ответа не знает - его знает игра. Под игрой здесь имеется в виду математический метод, который изначально был создан для формирования и анализа стратегий различных игр, а именно - теория игр. В экономике она используется наиболее часто. Хотя изначально она была разроботана для построения и анализа стратегий в играх, использующихся для развлечений.

Теория игры - это численный аппарат, позволяющий рассчитать сценарий, или, точнее, вероятность различных сценариев поведения системы или "игры", контролируемой различными факторами. Эти факторы, в свою очередь, определяются некоторым числом "игроков".

Таким образом, теория игр, в экономике получившая главный толчок к развитию, может применятся в самых разных областях человеческой деятельности. Пока рано говорить о том, чтобы эти программы применялись для разрешения военных конфлмктов, но в будущем это вполне реально.

3.4.1. Основные понятия теории игр

В настоящее время многие решения проблем в производственной,экономической или коммерческой деятельности зависят от субъективных качеств лица, принимающего решение. При выборе решений в условиях неопределенности всегда неизбежен элемент произвола, а следовательно, и риска.

Задачами о принятии решений в условиях полной или частичной неопределенности занимается теория игр и статистических решений. Неопределенность может принимать форму противодействия другой стороны, которая преследует противоположные цели, препятствует теми или другими действиями или состояниями внешней среды. В таких случаях приходится учитывать возможные варианты поведения противоположной стороны.

Возможные варианты поведения обеих сторон и их исходов для каждого сочетания альтернатив и состояний можно представить в виде математической модели, которая называется игрой. Обе стороны конфликта не могут точно предсказать взаимные действия. Несмотря на такую неопределенность, принимать решения приходится каждой стороне конфликта.

Теория игр - это математическая теория конфликтных ситуаций. Основными ограничениями этой теории являются предположение о полной ("идеальной") разумности противника и принятие при разрешении конфликта наиболее осторожного " перестраховочного" решения.

Конфликтующие стороны называются игроками , одна реализация игры партией, исход игры – выигрышем или проигрышем.

Ходом в теории игр называется выбор одного из предусмотренных правилами действия и его реализацию.

Личным ходом называют сознательный выбор игроком одного из возможных вариантов действия и его осуществление.

Случайным ходом называют выбор игроком, осуществляемый не волевым решением игрока, а каким либо механизмом случайного выбора (бросание монеты, сдача карт и т.п.) одного из возможных вариантов действия и его осуществление.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действия при каждом личном ходе этого игрока в зависимости от ситуации, сложившейся в процессе игры

Оптимальной стратегией игрока называется такая стратегия, которая при многократном повторении игры, содержащей личные и случайные ходы, обеспечивает игроку максимально возможный средний выигрыш (или, что то же самое, минимально возможный средний проигрыш).

В зависимости от причин, вызывающих неопределенность исходов, игры можно разделить на следующие основные группы:

- Комбинаторные игры, в которых правила в принципе дают возможность каждому игроку проанализировать все разнообразные варианты поведения и, сравнив эти варианты выбрать из них наилучший. Неопределенность здесь состоит в слишком большом количестве вариантов, которые надо проанализировать.

- Азартные игры, в которых исход оказывается неопределенным в силу влияния случайных факторов.

- Стратегические игры, в которых неопределенность исхода вызвана тем, что каждый из игроков, принимая решение, не знает, какой стратегии будут придерживаться другие участники игры, так как отсутствует информация о последующих действиях противника (партнера).

- Игра называется парной , если в игре участвуют два игрока.

- Игра называется множественной , если в игре участвуют больше двух игроков.

- Игра называется с нулевой суммой , если каждый игрок выигрывает за счет других, а сумма выигрыша и проигрыша одной стороны равны другой.

- Парная игра с нулевой суммой называется антагонистической игрой.

- Игра называется конечной , если у каждого игрока имеется только конечное число стратегий. В противном случае - игра бесконечная.

- Одношаговые игры, когда игрок выбирает одну из стратегий и делает один ход.

- В многошаговых играх игроки для достижения своих целей делают ряд ходов, которые могут ограничиваться правилами игры или могут продолжаться до тех пор, пока у одного из игроков не останется ресурсов для продолжения игры.

- Деловые игры имитируют организационно-экономические взаимодействия в различных организациях и предприятиях. Преимущества игровой имитации перед реальным объектом таковы:

Наглядность последействий принимаемых решений;

Переменный масштаб времени;

Повторение имеющегося опыта с изменением установок;

Переменный охват явлений и объектов.

Элементами игровой модели являются:

- Участники игры.

- Правила игры.

- Информационный массив, отражающий состояние и движение моделируемой системы.

Проведение классификации и группировки игр позволяет для однотипных игр найти общие методы поиска альтернатив в принятии решения, выработать рекомендации по наиболее рациональному образу действий в ходе развития конфликтных ситуаций в различных сферах деятельности.

3.4.2. Постановка игровых задач

Рассмотрим конечную парную игру с нулевой суммой. Игрок А имеет m стратегий (А 1 А 2 А m), а игрок В – n стратегий (В 1 , В 2 Вn). Такая игра называется игрой размерностью m х n. Пусть а ij - выигрыш игрока А в ситуации, когда игрок А выбрал стратегию А i , а игрок В выбрал стратегию В j . Выигрыш игрока в данной ситуации обозначим b ij . Игра с нулевой суммой, следовательно, а ij = - b ij . Для проведения анализа достаточно знать выигрыш только одного из игроков, допустим А.

Если игра состоит только из личных ходов, то выбор стратегии (А i , В j),однозначно определяет исход игры. Если игра содержит также случайные ходы, то ожидаемый выигрыш – это среднее значение (математическое ожидание).

Предположим, что значения а ij известны для каждой пары стратегий(А i , В j). Составим прямоугольную таблицу, строки которой соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В. Эта таблица называется платежной матрицей .

Цель игрока А максимизировать свой выигрыш, а цель игрока В минимизировать свой проигрыш.

Таким образом, платежная матрица имеет вид:

Задача состоит в определении:

1) Наилучшей (оптимальной) стратегии игрока А из стратегий А 1 А 2 А m ;

2) Наилучшей (оптимальной) стратегии игрока В из стратегий В 1 , В 2 Вn.

Для решения задачи применяется принцип, согласно которому участники игры одинаково разумны и каждый из них делает все для того, чтобы добиться своей цели.

3.4.3. Методы решения игровых задач

Принцип минимакса

Проанализируем последовательно каждую стратегию игрока А. Если игрок А выбирает стратегию А 1 , то игрок В может выбрать такую стратегию В j , при которой выигрыш игрока А будет равен наименьшему из чисел a 1j . Обозначим его a 1:

то есть a 1 – минимальное значение из всех чисел первой строки.

Это можно распространить на все строки. Поэтому игрок А должен выбрать ту стратегию, для которой число a i - максимально.

Величина a - гарантированный выигрыш, который может обеспечить себе игрок а при любом поведении игрока В. Величина a называется нижней ценой игры.

Игрок В заинтересован в том, чтобы уменьшить свой проигрыш, то есть обратить выигрыш игрока А в минимум. Для выбора оптимальной стратегии он должен найти максимальное значение выигрыша в каждом столбце и среди них выбрать наименьшее.

Обозначим через b j максимальное значение в каждом столбце:

Наименьшее значение b j обозначим b.

b = min max a ij

b называется верхней границей игры. Принцип, диктующий игрокам выбор игрокам соответствующих стратегий, называется принципом минимакса.

Существуют матричные игры, для которых нижняя цена игры равна верхней, такие игры называются играми с седловой точкой. В этом случае g=a=b называется чистой ценой игры, а стратегии А * i , В * j , позволяющие достичь этого значения - оптимальными. Пара (А * i , В * j)называется седловой точкой матрицы, так как элемент a ij .= g одновременно является минимальным в i-строке и максимальным в j- столбце. Оптимальные стратегии А * i , В * j , и чистая цена являются решением игры в чистых стратегиях, т. е. без привлечения механизма случайного выбора.

Пример 1.

Пусть дана платежная матрица. Найти решение игры, т. е. определить нижнюю и верхнюю цены игры и минимаксные стратегии.

Здесь a 1 =min a 1 j =min(5,3,8,2) =2

a =max min a ij = max(2,1,4) =4

b = min max a ij =min(9,6,8,7) =6

таким образом, нижней цене игры (a=4) соответствует стратегия А 3 .Выбирая эту стратегию, игрок А достигнет выигрыша не менее 4 при любом поведении игрока В. Верхней цене игры (b=6) соответствует стратегия игрока В. Эти стратегии являются минимаксными. Если обе стороны будут придерживаться этих стратегий, выигрыш будет равен 4 (a 33).

Пример 2.

Дана платежная матрица. Найти нижнюю и верхнюю цены игры.

a =max min a ij = max(1,2,3) =3

b = min max a ij =min(5,6,3) =3

Следовательно, a =b=g=3. Седловой точкой является пара (А * 3 , В * 3). Если матричная игра содержит седловую точку, то ее решение находится по принципу минимакса.

Решение игр в смешанных стратегиях

Если платежная матрица не содержит седловой точки (aсмешанной стратегией .

Для применения смешанных стратегий требуются следующие условия:

1) В игре отсутствует седловая точка.

2) Игроками используется случайная смесь чистых стратегий с соответствующими вероятностями.

3) Игра многократно повторяется в одних и тех же условиях.

4) При каждом из ходов игрок не информирован о выборе стратегии другим игроком.

5) Допускается усреднение результатов игр.

В теории игр доказано, что любая парная игра с нулевой суммой имеет по крайней мере одно решение в смешанных стратегиях, отсюда следует, что каждая конечная игра имеет цену g. g - средний выигрыш, приходящийся на одну партию, удовлетворяющий условию a<=g<=b . Оптимальное решение игры в смешанных стратегиях обладает следующим свойством: каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии.

Стратегии игроков в их оптимальных смешанных стратегиях называются активными.

Теорема об активных стратегиях.

Применение оптимальной смешанной стратегии обеспечивает игроку максимальный средний выигрыш(или минимальный средний проигрыш), равный цене игры g, независимо от того, какие действия предпринимает другой игрок, если он только не выходит за пределы своих активных стратегий.

Введем обозначения:

Р 1 Р 2 … Р m - вероятности использования игроком А стратегий А 1 А 2 ….. А m ;

Q 1 Q 2 …Q n вероятности использования игроком В стратегий В 1 , В 2….. Вn

Смешанную стратегию игрока А запишем в виде:

А 1 А 2 …. А m

Р 1 Р 2 … Р m

Смешанную стратегию игрока B запишем в виде:

B 1 B 2 …. B n

Зная платежную матрицу А, можно определить средний выигрыш (математическое ожидание) М(А,P,Q):

М(А,P,Q)=S Sa ij Р i Q j

Средний выигрыш игрока А:

a =max minМ(А,P,Q)

Средний проигрыш игрока В:

b = min maxМ(А,P,Q)

Обозначим через Р А * и Q В * векторы, соответствующие оптимальным смешанным стратегиям, при которых выполняется:

max minМ(А,P,Q) = min maxМ(А,P,Q)= М(А,P А * ,Q В *)

При этом выполняется условие:

maxМ(А,P,Q В *) <=maxМ(А,P А * ,Q В *)<= maxМ(А,P А * ,Q)

Решить игру – это означает найти цену игры и оптимальные стратегии.

Геометрический метод определения цены игры и оптимальных стратегий

(Для игры 2Х2)

На оси абсцисс откладывается отрезок длиной 1.Левый конец этого отрезка соответствует стратегии А 1 , правый – стратегии А 2 .

По оси ординат откладываются выигрыши а 11 и а 12 .

По линии, параллельной оси ординат из точки 1 откладываются выигрыши а 21 и а 22 .

Если игрок В применяет стратегию В 1 , то соединяем точки а 11 и а 21 , если – В 2, то – а 12 и а 22 .

Средний выигрыш изображается точкой N, точка пересечения прямых В 1 В 1 и В 2 В 2 .Абсцисса этой точки равна Р 2 , а ордината цене игры - g.

По сравнению с прежней технологией выигрыш составляет 55%.

Использование математических методов, к числу которых относится теория игр, в анализе экономических процессов позволяет выявить такие тенденции, взаимосвязи, которые остаются скрытыми при применении других методов.

В экономической действительности на каждом шагу встречаются ситуации, когда отдельные люди, фирмы или целые страны пытаются обойти друг друга в борьбе за первенство. Такими ситуациями и занимается ветвь экономического анализа, называемая "теория игр".

"Теория игр изучает то, каким образом двое или более игроков выбирают отдельные действия или целые стратегии. Название этой теории настраивает на несколько отвлеченный лад, поскольку оно ассоциируется с игрой в шахматы и бридж или с ведением войн. На самом деле выводы этой дисциплины весьма глубоки. Теория игр была разработана выходцем из Венгрии, гениальным математиком Джоном фон Нейманом (1903-1957). Эта теория сравнительно молодая математическая дисциплина.

В дальнейшем теория игр была дополнена такими разработками, как равновесие Нэша (по имени математика Джона Нэша). Равновесие по Нэшу возникает, когда ни один из игроков не может улучшить своего положения, если его противники не изменят своих стратегий. Стратегия каждого игрока является лучшим ответом на стратегию его противника. Иногда равновесие по Нэшу называют также некооперативным равновесием, поскольку участники совершают свой выбор, не вступая ни в какие соглашения друг с другом и не принимая во внимание никаких других соображений (интересы общества или интересы других сторон), кроме собственной выгоды.

Равновесие совершенно конкурентного рынка также является равновесием по Нэшу, или некооперативным равновесием, при котором каждая фирма и каждый потребитель принимают решения исходя из уже существующих цен как не зависящих от его воли. Мы уже знаем, что в условиях, когда каждая фирма стремится максимизировать прибыль, а каждый потребитель - полезность, равновесие возникает, когда цены равны предельным издержкам, а прибыль - нулю. " Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 200 с.

Вспомним концепцию "невидимой руки" Адама Смита: "Преследуя собственные интересы, он (индивид) часто в большей степени способствует процветанию общества, чем если бы он к этому сознательно стремился" Смит А. Исследование о природе и причинах богатства народов // Антология экономической классики. - М.: Эконов-ключ, 19931. Парадокс "невидимой руки" заключается в том, что, хотя каждый и действует как самостоятельная сила, в конечном итоге общество остается в выигрыше. При этом конкурентное равновесие является равновесием по Нэшу еще и в том смысле, что ни у кого нет повода изменять свою стратегию, если и все остальные придерживаются своей. В условиях совершенно конкурентной экономики некооперативное поведение является экономически эффективным с точки зрения интересов общества.

Напротив, когда члены некоторой группы решают кооперироваться и совместно прийти к монопольной цене, такое поведение нанесет ущерб экономической эффективности. Государство вынуждено создавать антимонопольное законодательство и тем самым урезонивать тех, кто пытается завысить цены и поделить рынок. Однако не всегда разобщенность в поведении является экономически эффективной. Соперничество между фирмами ведет к низким ценам и конкурентному объему производства. "Невидимая рука" оказывает почти волшебное воздействие на совершенно конкурентные рынки: эффективное распределение ресурсов происходит в результате действий индивидов, стремящихся к максимизации прибыли.

Однако во многих случаях некооперативное поведение приводит к экономической неэффективности или даже представляет угрозу для общества (например, гонка вооружений). Некооперативное поведение как со стороны США, так и со стороны СССР заставляло обе стороны вкладывать огромные средства в военную область и привело к созданию арсенала, состоящего из почти 100000 ядерных боеголовок. Существует также опасение, что чрезмерная доступность оружия в Америке может стать причиной своего рода внутренней гонки вооружений. Одни люди вооружают себя против других - и этот "бег наперегонки" может продолжаться до бесконечности. Здесь в действие вступает вполне "видимая рука", направляющая это разрушительное состязание и не имеющая ничего общего с "невидимой рукой" Адама Смита. Еще один важный экономический пример - "игры в загрязнения" (окружающей среды). Здесь объектом нашего внимания станет такой вид побочных эффектов, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма из благородных побуждений решилась бы уменьшить вредные выбросы, то издержки, а следовательно, и цены на ее продукцию, возросли бы, а спрос упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Вступив в смертоносную экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры, с тем чтобы равновесие переместилось. В этом положении загрязнение будет незначительным, прибыли же останутся теми же. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 203 с.

Игры в загрязнения - один из случаев того, как механизм действия "невидимой руки" не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Теория игр применима и к макроэкономической политике. Экономисты и политики в США часто поругивают существующую денежно-кредитную и налогово-бюджетную политику: дефицит федерального бюджета слишком велик и уменьшает национальные сбережения, тогда как кредитно-денежная политика порождает такие процентные ставки, которые ограничивают инвестиции. Более того, этот "бюджетно-денежный синдром" является свойством макроэкономического "ландшафта" уже более десяти лет. Почему же Америка так упорно проводит оба вида политики, хотя ни один из них нежелателен?

Можно попытаться объяснить этот синдром с точки зрения теории игр. Стало привычным в современной экономике разделять данные разновидности политики. Центральный банк Америки - Федеральная резервная система - определяет независимо от правительства денежно-кредитную политику, назначая процентные ставки. Налогово-бюджетной политикой, налогами и расходами - заведуют законодательные и исполнительные власти. Однако каждый из этих видов политики имеет разные цели. Центральный банк стремится ограничить рост предложения денег и обеспечить низкие темпы инфляции.

Артур Берне, специалист по экономическим циклам и бывший глава ФРС, писал: "Чиновники центрального банка склонны, в силу традиции, а возможно, и в силу личного склада, держать цены в узде. Их ненависть к инфляции еще более разгорается после общения с единомышленниками из частных финансовых кругов". Власти же, заведующие налогово-бюджетной политикой, больше озабочены такими вопросами, как полная занятость, собственная популярность, сохранение низких налогов и грядущие выборы.

Лица, проводящие налогово-бюджетную политику, предпочитают минимально возможную величину безработицы, увеличение государственных расходов в сочетании с понижением налогов и не заботятся об инфляции и частных инвестициях.

В бюджетно-денежной игре кооперативная стратегия приводит к умеренной инфляции и безработице в сочетании с большим объемом инвестиций, стимулирующим экономический рост. Однако желание уменьшить безработицу и реализовать социальные программы побуждает руководство страны прибегать к увеличению бюджетного дефицита, тогда как неприятие инфляции заставляет центральный банк поднимать процентные ставки. Некооперативное равновесие означает наименьший возможный объем инвестиций.

Они выбирают "большой бюджетный дефицит". С другой стороны, центральный банк пытается уменьшить инфляцию, не подвержен влиянию профсоюзов и лоббирующих группировок и выбирает "высокие процентные ставки". Результатом является некооперативное равновесие с умеренными величинами инфляции и безработицы, но с низким уровнем инвестиций.

Возможно, что именно благодаря "бюджетно-денежной игре" президент Клинтон выдвинул экономическую программу по уменьшению бюджетного дефицита, снижению процентных ставок и расширению объема инвестиций.

Существуют разные способы описания игр. Один из них состоит в том, что рассматриваются все возможные стратегии игроков и определяются платежи, соответствующие любой возможной комбинации стратегий игроков. Игра, описанная таким способом, называется игрой в нормальной форме.

Нормальная форма игры двух участников состоит из двух платежных матриц, показывающих, какую сумму получит каждый из игроков при любой из возможных пар стратегий. Обычно эти матрицы выражают в форме единой матрицы, которую называют биматрицей. Элементами биматрицы являются пары чисел, первое из которых определяет величину выигрыша первого игрока, а второе - величину выигрыша второго. Первый игрок (государство) выбирает одну из m стратегий, при этом каждой стратегии соответствует строка матрицы I (i= 1,…,m). Второй игрок (бизнес) выбирает одну из n стратегий, при этом каждой стратегии соответствует столбец матрицы j (j= 1,…,n). Пара чисел на пересечении строки и столбца, которые соответствуют стратегиям, выбранным игроками, показывает величину выигрыша каждого из них. В общем случае, если игрок I выбирает стратегию i а игрок II - стратегию j, то выигрыши первого и второго игроков соответственно равны и (i= 1,…,m; j= 1,…,n), где m,n - число конечных стратегий соответственно игроков I и II. Предполагается, что каждому из игроков известны все элементы биматрицы выигрышей. В этом случае их стратегия называется определенной и имеет конечное число вариантов.

Если игроку неизвестны какие-либо варианты стратегий противника (элементы матрицы), то игра называется неопределенной и может иметь бесконечное число вариантов (стратегий).

Существуют и другие классы игр, где игроки выигрывают и проигрывают одновременно.

Антагонистические игры двух лиц связаны с тем, что один из игроков выигрывает ровно столько, сколько проигрывает другой. В таких играх интересы ее игроков прямо противоположны друг другу.

В качестве примера рассмотрим игру, в которой участвуют два игрока, каждый из них имеет по две стратегии. Выигрыши каждого из игроков определяются такими правилами: если оба игрока выбирают стратегии с одинаковыми номерами (игрок I - , игрок II -), то первый игрок выигрывает, а второй проигрывает (государство повышает налоги - бизнес платит их, т.е. выигрыш государства определяет проигрыш бизнеса); если оба игрока выбирают разные стратегии (игрок I - і 1 игрок II - j 2 то первый проигрывает, а второй выигрывает (государство повышает налоги на бизнес - бизнес уклоняется от них; проигрыш государства - выигрыш бизнеса).

Теория игр есть теория математических моделей таких явлений, в которых участники ("игроки") имеют различные интересы и располагают для достижения своих целей более или менее свободно выбираемыми путями (стратегиями). В большинстве работ по теории игр предполагается, что интересы участников игры поддаются количественному измерению и являются вещественными функциями ситуаций, т.е. набором стратегий, получаемых при выборе каждым из игроков некоторой своей стратегии. Для получения результатов необходимо рассматривать те или иные классы игр, выделенные некоторыми ограничительными предположениями. Такие ограничения можно накладывать несколькими путями.

Можно выделить несколько способов (путей) наложения ограничений.

1. Ограничения возможностей взаимоотношений игроков между собой. Простейшим случаем является такой, когда игроки действуют совершенно разобщено и не могут сознательно помогать или мешать друг другу действием или бездействием, информацией или дезинформацией. Такое положение дел неизбежно наступает, когда в игре участвуют только два игрока (государство и бизнес), имеющие диаметрально противоположные интересы: увеличение выигрыша одного из них означает уменьшение выигрыша другого, и притом на ту же сумму, при условии, что выигрыши обоих игроков выражаются в одинаковых единицах измерения. Не нарушая общности, можно принять суммарный выигрыш обоих игроков равным нулю и трактовать выигрыш одного из них как проигрыш другого.

Эти игры называют антагонистическими (или играми с нулевой суммой, или нулевыми играми двух лиц). Они предполагают, что никаких взаимоотношений между игроками, никаких компромиссов, обменов информацией и другими ресурсами не может быть по самой своей природе вещей, по сути игры, поскольку каждое сообщение, получаемое игроком о намерениях другого, может лишь увеличить выигрыш первого игрока и тем самым увеличить проигрыш его противника.

Таким образом, сделаем вывод, что в антагонистических играх игрокам можно не иметь непосредственных взаимоотношений и вместе с тем находиться в состоянии игры (противостоянии) по отношению друг к другу.

2. Ограничения или упрощающие предположения на множестве стратегий игроков. В наиболее простом случае эти множества стратегий конечны, что устраняет ситуации, связанные с возможными совпадениями (сходимостями) в множествах стратегий, избавляет от необходимости вводить на множествах какую-либо технологию.

Игры, в которых множества стратегий каждого из игроков конечны, называются конечными играми.

3. Предложения о внутреннем строении каждой стратегии, т.е. о ее содержании. Так, например, в качестве стратегий можно рассматривать функции времени (непрерывного или дискретного), значениями которых являются действия игрока в соответствующий момент. Эти и подобные им игры принято называть динамическими (позиционными).

Ограничениями стратегий игроков могут быть и их целевые функции, т.е. определение тех целей, на реализацию которых направлена та или иная стратегия. Можно предположить, что ограничения на стратегию связаны и со способами достижения этих целей в тех или иных временных интервалах, например стремление бизнеса добиться снижения размеров обязательных продаж валютной выручки в течение ближайших трех месяцев (или одного года). Если же предположений о природе стратегий не делается, то они считаются некоторым абстрактным множеством. Такого рода игры в самой простой постановке вопроса называются играми в нормальной форме.

Конечные антагонистические игры в нормальной форме называются матричными. Это название объясняется возможностью следующей интерпретации игр такого типа. Будем понимать стратегии первого игрока (игрок I - государство) как строки некоторой матрицы, а стратегии второго игрока (игрок II - бизнес) - как ее столбцы. Для краткости стратегиями игроков называют не сами строки или столбцы матрицы, а их номера. Тогда ситуациями игры оказываются клетки этой матрицы, стоящие на пересечениях каждой строки с каждым из столбцов. Заполнив эти клетки-ситуации числами, описывающими выигрыши игрока I в этих ситуациях, мы завершим задание игры. Полученная матрица называется матрицей выигрыша игры, или матрицей игры. Ввиду антагонистичности матричной игры выигрыш игрока II в каждой ситуации вполне определяется выигрышем игрока I в этой ситуации, отличаясь от него только знаком. Поэтому дополнительных указаний о функции выигрыша игрока II в матричной игре не требуется.

Матрицу, имеющую m строк и n столбцов, называют (m*n) - матрицей, а игру с этой матрицей - (m*n) - игрой.

Процесс (m*n) - игры с матрицей можно представить следующим образом:

Игрок I фиксирует номер строки i, а игрок II - номер столбца j, после чего первый игрок получает от своего противника сумму

Целью игрока I в матричной игре является получение максимального выигрыша, цель игрока II состоит в том, чтобы дать игроку I минимальный выигрыш.

Пусть игрок I (государство) выбирает некоторую свою стратегию i. Тогда в наихудшем случае он получит выигрыш min . В теории игр игроки предполагаются осторожными, рассчитывающими на наименее благоприятный для себя поворот событий.

Такое наименее благоприятное для игрока I положение дел может наступить, например, в том случае, когда стратегия i станет известной игроку II (бизнес). Предвидя такую возможность, игрок I должен выбирать свою стратегию так, чтобы максимизировать этот минимальный выигрыш:

min = max min (I)

Значение, стоящее в правой части равенства, является гарантированным выигрышем игрока I. Игрок II (бизнес) должен выбрать такую стратегию, что

max = min max (II)

Значение, стоящее в правой части равенства, является выигрышем игрока I, больше которого он при правильных действиях противника получить не может.

Фактический выигрыш игрока I должен при разумных действиях партнеров находиться в интервале между значениями выигрыша в первом и втором случаях. Если эти значения равны, то выигрыш игрока I является вполне определенным числом, сами игры называются вполне определенными. Выигрыш игрока I называется значением игры, и он равен элементу матрицы.

У игроков могут быть дополнительные возможности - выбор своих стратегий случайно и независимо друг от друга (стратегии соответствуют строкам и столбцам матрицы). Случайный выбор игроком своих стратегий называется смешанной стра тегии этого игрока. В (m*n) - игрё смешанные стратегии игрока I определяются наборами вероятностей: X = (,…), с которыми этот игрок выбирает свои первоначальные, чистые стратегии.

В основе теории матричных игр лежит теорема Неймана активных стратегиях: "Если один из игроков придерживается своей оптимальной стратегии, то выигрыш остается неизменным и равным цене игры независимо от того, что делает другой игрок, если он не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях" Neumann J. Contributions to the theory of games. 1995.. - 155 с.). Отметим, что активной называется чистая стратегия игрока, входящая в его оптимальную смешанную стратегию с отличной от нуля вероятностью.

Главная цель игры - нахождение оптимальной стратегии для обоих игроков, если не с максимальным выигрышем одного из них, то тогда с минимальным проигрышем для обоих. Метод нахождения оптимальных стратегий дает часто больше, чем это необходимо для практических целей. В матричной игре не обязательно, чтобы игрок знал все свои оптимальные структуры, поскольку они все взаимозаменяемы и игроку для успешной игры, достаточно знать одну из них. Поэтому применительно к матричным играм актуальным является вопрос о нахождении хотя бы одной оптимальной стратегии для каждого из игроков.

Основная теорема о матричных играх устанавливает существование значения игры и оптимальных смешанных стратегий для обоих игроков. Оптимальная стратегия не обязана быть единичной. Это очень важный вывод, полученный на основе теории игр.

Для играющего в матричную игру субъекта характерны следующие качества:

элементы матрицы интерпретируются как денежные платежи и соответственно их выигрыш и проигрыш оцениваются в денежной форме;

каждый из игроков применяет к этим элементам функцию полезности;

в игре каждый игрок действует так, как если бы функция полезности его оппонента оказывала на матрицу точно такое же воздействие, т.е. каждый смотрит на игру "со своей колокольни".

Эти предположения приводят к играм с нулевой суммой, в которых возникают отношения кооперирования, торгов и другого типа взаимодействий между игроками как до начала игры, так и в ее процессе. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 210 - 211с.

Обобщение теории игр, имеющее целью включение в нее других возможностей анализа, приводит к интересным, но достаточно трудным задачам. При развитии теории игр необходимо применять функцию полезности не только к денежным исходам, но и к суммам с ожидаемыми будущими исходами. Эти предположения являются спорными, но они существуют. В данном случае мы исходим из того, что это предположение о подобной операции имеет сходство с поведением игроков в определенных ситуациях принятия решений и допускает возможность, что способ ведения игры данным игроком зависит от состояния его капитала во время ведения им игры.

Рассмотрим это на следующем примере. Пусть первый игрок к моменту начала игры G обладает капиталом в x долларов. Тогда его капитал в конце игры будет равен + x, где - получаемый им от игры фактический выигрыш. Полезность, которую он приписывает такому исходу, равна f (+ х), где f - функция полезности.

Эти несколько примеров иллюстрируют только часть огромного разнообразия результатов, которые можно получить, используя теорию игр. Данный раздел экономической теории является чрезвычайно полезным (для экономистов и других представителей общественных наук) инструментом анализа ситуаций, при которых небольшое число людей хорошо информировано и пытается перехитрить друг друга на рынках, в сфере политики или в военных действиях.

Теория игр впервые была систематически изложена Нейманом и Моргенштерном и обнародована лишь в 1944 году в монографии " Теория игр и экономического поведения", хотя отдельные результаты были опубликованы еще в 20-х годах. Нейман и Моргенштерн написали оригинальную книгу, которая содержала преимущественно экономические примеры, поскольку экономические задачи проще других описать с помощью чисел. Во время второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, сразу увидели в ней математический аппарат для исследования стратегических проблем и подготовки решений. Затем основное внимание вновь было обращено к экономическим проблемам. Сейчас сфера применения теории игр значительно расширилась. Так, в социальных науках аппарат теории игр применяется в психологии для анализа торговых соглашений и переговоров, а также для изучения принципов формирования коалиций и т.п.

Теория игр - это математический аппарат, рассматривает конфликтные ситуации, а также ситуации совместных действий нескольких участников. Задача теории игр состоит в разработке рекомендаций по рациональной поведения участников игры.

Реальные конфликтные ситуации достаточно сложные и обремененные большим количеством несущественных факторов, что затрудняет их анализ, поэтому на практике строят упрощенные модели конфликтных ситуаций, которые называют играми.

Характерными чертами математической модели игровой ситуации является наличие, во-первых, нескольких участников, которых называют игроками, во-вторых, описания возможных действий каждой из сторон, называются стратегиями, в-третьих, определенных результатов действий для каждого игрока, подаются функциями выигрыша. Задачей каждого игрока является нахождение оптимальной стратегии, которая при условии многократного повторения игры обеспечивает данному игроку максимально возможный средний выигрыш.

Существует очень много различных игр. Примером "игры" в буквальном смысле этого слова, прежде всего, есть спортивная, карточная игра, шахматы и т.д. От реальной конфликтной ситуации игра отличается не только упрощенной форме, а также наличием определенных правил, по которым должны действовать ее участники. Исследование таких формализованных игр обычно не может дать четких рекомендаций для реальных условий, однако является самым удобным объектом для изучения конфликтных ситуаций и оценки возможных решений с разных точек зрения. Рассчитанные на основе игровых моделей оптимальные планы не определяют единственно правильное решение в сложных реальных условиях, однако служат математически обоснованной основанием для принятия таких решений.

Применение теории игр в политологии

Теория игр является математическим описанием процесса коммуникаций и принятия решений между политическими силами, которые носят обобщенное название (политических) игроков или (политических) агентов. Задачей теории игр является разработка политических механизмов и технологий для согласования интересов политических игроков.

По разработке понятий этой теории и их применение в политической экономике известны труды таких ученых, как Г. Хотелинг, Е. Довнс, Т. Персон, Г. Табелини , Д. Aceмоглу, Д. Робинсон и многие другие.

Стоит заметить, что российскими учеными подготовлено несколько оригинальных разработок по теории политологического моделирования, однако, в целом, достижения в данной сфере гораздо скромнее, чем на Западе. Значительная часть российских обществоведов до сих пор не применяла методы математического моделирования на практике, довольствуясь лишь вербальным описанием политических процессов.

По украинскому политологии, то применением именно математического аппарата теории игр для изучения политических процессов занимается лишь научная школа проф.В. Корниенко .

Понятно, что применяются различные модели при исследовании политических процессов, в зависимости от задачи, цели, объекта и предмета, наличия эмпирических данных и других факторов. Объектами исследования в конкретной политической ситуации могут быть большие социальные группы, политические институты, политическая коммуникация, политические лидеры. Конечно, каждый из этих объектов требует своего исследовательского инструментария и методов моделирования.

В научной литературе модели классифицируют на основании различных критериев. Так, чаще всего, как основание для классификации берется вид языка, на котором они формулируются.

Таким образом, различаются содержательные и формальные модели. По функциональному признаку содержательные модели подразделяются на описательные, объяснительные и прогностические.

Особое место в политологических исследованиях занимают формальные математические модели, позволяющие придать этому виду гуманитарных исследований сугубо научную форму, характерную для исследований в области естественных наук. Математические модели можно условно разделить на три взаимосвязанных группы:

1) детерминированные модели, представленные в форме уравнений и неравенств, описывающих поведение изучаемой

2) модели оптимизации, содержат выражение, нужно максимизировать или минимизировать при определенных ограничениях,

3) вероятностные модели, которые также выражаются в форме уравнений и неравенств, но имеют вероятностный смысл, т.е. поиск решения основан на максимизации среднего значения полезности .

По логическими уровнями модели делятся на макро - и микромодели. В зависимости от способа описания объекта модели, последние являются количественные и качественные . По отношению к реальности различают модели данного, возможного и желаемого состояния системы. первые используются при исследовании свойств реально существующего объекта. Модели второго и третьего типа формируются при необходимости учесть возможные изменения заданного объекта под влиянием различных обстоятельств.

При возникновении противоречия между данным и желаемым состоянием системы используется модель проблемной ситуации. Пути и средства для преодоления данного противоречия содержатся в моделях решения . Также классифицируют модели по их происхождению на искусственные и естественные. Первые создаются целенаправленно для решения конкретных задач, другие формируются как результат определенного процесса .

Вообще сущность моделирования заключается в замещении реального объекта политической действительности А объектом В, созданным искусственно, повторяющий существенные стороны объекта А, то есть его моделью. Модель - это образ объекта или структуры, объяснения или описание системы, процесса или ряда связанных между собой событий. Для моделирования любой структуры, объекта или процесса формируется система уравнений. Системы связей внутри моделей представляются путем составления схемы распределения потока информации с помощью, например, математического или логико-семантического моделирования . Любая значимая сторона объекта исследования или его параметры получают свой абстрактный выражение (если говорить о математическом моделировании, то конкретный математическое выражение). Иными словами, сущность процесса моделирования заключается в проведении некоторых операций над полученными выражениями. Если речь идет о математическом моделировании, то используются такие операции, как построение системы уравнений, построение линейных уравнений и неровностей, использование свойств выпуклых множеств в геометрическом методе, максимизация (минимизация) величин, применение задачи оптимизации и целевой функции т.д. При построении математических моделей, в основном, используются линейное программирование, теория игр, методы теории графов, динамическое программирование и т.д. Однако чаще исследователи при решении задач по изучению политического объекта, останавливаются на формировании модели, не совершая особых операций по ее изучению. Многие ученых предпочитают воспользоваться логическими способами построения модели, применяя тот или иной алгоритм процесса моделирования.

Для решения задач исследования ученые применяют различные методы моделирования, имеющие под собой основу, тот или иной подход к изучению политической ситуации. В этом плане наиболее разработанным является системный подход, позволяющий рассматривать объект изучения как систему. На основе системного подхода созданы и активно используются содержательные модели, прежде всего - модели кризисов, революций, катастроф, хаоса. Не менее разработанным подходом к изучению политического процесса является теория рационального выбора, на основе которой довольно часто применяется метод моделирования. В первую очередь, имеются в виду игровые модели конфликта и процесса принятия решений. Особого внимания заслуживает модель выборов Даунс, которая позволяет определять поведение кандидатов Необходимо отметить, что политическое моделирование своем появлении обязано различным наукам, в рамках которых появился и развивался этот метод. Как отмечалось, по математике были взяты следующие основные приемы как линейное моделирование, геометрический метод моделирования, теория графов, динамическое моделирование. В физике и химии давно применяются упомянутые выше модели хаоса, катастроф, кризисов, эволюции. Из психологии пришли основные модели конфликта. С экономической науки - эконометрические методы, модели теории игр, теория принятия решений, методы анализа экономического поведения. Весьма интересным и перспективным является метод анализа иерархий, разработанный американским ученым Т. Саати. Кроме того, необходимо отметить появление нового направления в политической науке - компьютерного моделирования, которое занимает почетное место при изучении феноменов и факторов развития политического процесса. существуют и совершенствуются и другие методы политического моделирования, которые способны привнести новое в изучении глубинных механизмов функционирования политических процессов.

Что же побуждает современных ученых к моделированию в политологии, ведь последняя традиционно считается гуманитарной дисциплиной?

Первая причина заключается в том, что " значительная часть событий в политической жизни является ожидаемой, поэтому ее появление можно предвидеть " . Математические модели как раз и помогают выразить подобные неформальные прогнозы.

Во-вторых, формальная модель помогает преодолеть свободные формулировки допущений неформальной модели и дать точный и способен к проверке прогноз.

В-третьих, преимуществом формальных моделей является их способность систематически оперировать до сущности более высокого уровня сложности. Математика сначала применялась как средство логического вывода и систематического оперирования понятиями .

На наш взгляд, интересным и необходимым является применение математического аппарата именно теории игр для изучения политических процессов в Украине. С точки зрения определения, теория игр рассматривает широкий круг вопросов принятия решений группой участников, имеющих рациональную поведение, согласно которой каждый из игроков пытается путем выбора своей стратегии максимизировать свой выигрыш.

Вообще под понятие "игра " подходит любая ситуация с рациональными, то есть целеполагающими, оптимизирующими субъектами (" участниками", " игроками " или " агентами "), а также некоторые ситуации с неполной рациональностью.

Понятно, что в случае взаимодействия нескольких игроков, индивидуальная рациональная стратегия каждого из них зависит от стратегий других. Набор таких рациональных стратегий называется решением игры или равновесием.

Решением игры, в общем виде, можно назвать любое описание того, каким образом должны вести себя игроки в той или иной ситуации. Это не обязательно должен быть набор рекомендуемых действий для каждого игрока. Решением, например, может быть набор финалов игры. Такое решение можно интерпретировать как набор ситуаций, рациональных относительно некоторых предположений о поведении игроков. То есть при рациональной поведении игроков должны реализовываться только ситуации, соответствующие решению. Также решением игры может быть и набор смешанных стратегий, если недостаточно только одних чистых стратегий.

Естественно, что сегодня в теории игр не существует единой концепции решения, подходит для всех классов игр. Связано это, во-первых, с тем, что формальное описание игры есть только общей копией из чрезвычайно сложных реальных процессов, происходящих в ходе игры.

Например, обмен информацией между политиками, возможных соглашений между ними, самостоятельных действий политических деятелей по увеличению своей информированности. Конечно, нельзя исключить и возможность иррационального поведения игроков, которая сегодня практически не поддается формализации.

В качестве примеров применения теории игр в экономике можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д.

Рассмотрим двух гигантов, конкурирующих на рынке производства пассажирских самолетов: «Боинг» и «Эйрбас». Предельные издержки производства самолетов одинаковы у каждой компании и равны 10 млн. долларов за штуку.

Рыночный спрос на самолёты показан в таблице 1.

Таблица 1 – Рыночный спрос на самолёты

В таблице 2 приведена прибыль конкурентов, если они договорятся о разделе рынка пополам.

Таблица 2 – Прибыль компаний «Боинг» и «Эйрбас» в случае раздела рынка

Продолжение таблицы 2

Прибыль участников будет максимальна, если они оба произведут по 45 самолетов (вместе 90) и равна в этом случае 2025 млн. долл. Эта точка является Парето-оптимумом, то есть в ней состояние одного участника нельзя улучшить без ухудшения состояния другого.

Каждый из участников может думать следующим образом:

Если я произвожу 45 самолетов и мой конкурент производит 45 самолетов, то наша общая прибыль будет максимальной, и я получу половину от максимальной общей прибыли. Однако что мешает мне произвести не 45, а 55 самолетов? В этом случае, если мой конкурент не предпримет ответных действий, общий объем продаж вырастет до 100, цена упадет до 50, а получу выручку 55∙50=2750 и прибыль 2750-550=2200. Тогда прибыль моего конкурента составит 50∙45-10∙45=1800.

Точно также может думать и другой участник, и в таком случае они оба произведут по 55 самолетов. В этом случае общий объём продаж вырастет до 110, цена упадет до 45, общая прибыль будет равна 1925, и каждый из участников получит прибыль 1925.

Игра этой ситуации описывается следующей матрицей выигрышей рисунок 4.

Боинг
Произвести 45 Произвести 55
Эйрбас Произвести 45 (2025;2025) (2200;1800)
Произвести 55 (1800;2200) (1925;1925)

Рисунок 4 – Матрица выигрышей для компаний «Боинг» и «Эйрбас»

Первое значение в скобках означает прибыль Боинга, второе – прибыль Эйрбаса.

Если между участниками не заключено договоренностей, то каждый из них имеет стимулы произвести 55, а не 45 штук, чтобы увеличить свою прибыль. В этом случае производство 55 штук является доминирующей стратегий для каждого участника. Нэш-равновесие устанавливается в ситуации, когда они оба производят по 55 штук и получают прибыль в размере 1925 млн. долл. Это равновесие не является Парето-оптимальным.

Данная ситуация показывает, как эгоистические интересы каждого из участников мешают им достигнуть оптимального значения прибыли.

Рассмотрим пример «доминирующей стратегии», в котором одним из участников принимается решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке. Другое предприятие обдумывает вопрос о проникновении на рынок. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Игровая ситуация с указанием платежей показана в виде дерева на рисунке 3.

Рисунок 3 – Решение о проникновении на рынок

Та же самая игровая ситуация может быть представлена и в нормальной форме (рисунок 4). Здесь обозначены два состояния – «вступление – дружественная реакция» и «невступление – агрессивная реакция». Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном – 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.

Рисунок 4 – Нормальная форма игры, предметом которой является проникновение на рынок

Первое значение в скобках означает прибыль компании-монополиста, второе – прибыль компании-аутсайдера.

Подобное рациональное равновесие характерно для «частично усовершенствованной» игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор «лучшего» хода на последнем этапе игры, затем выбирается «лучший» ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.

Компаниям полезно в эксплицитном виде обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход «невступление», если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход «невступление» при вероятности агрессивного ответа 0,5.

Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации «выигрыш – выигрыш». Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.

Практическая часть

Швейное предприятие реализуется свою продукцию через магазин. Сбыт зависит от состояния погоды. В условиях теплой погоды предприятие реализует a костюмов и b платьев, а при прохладной погоде - c костюмов и d платьев. Затраты на изготовление одного костюма равны α 0 , а платья – β 0 рублям, цена реализации соответственно равна α 1 рублей и β 1 рублей. Определить оптимальную стратегию предприятия.

a=1000, b=2300, c=1400, d=700,

α 0 =20, β 0 =5, α 1 =40, β 1 =12.

Составим математическую модель задачи. В связи с возможными состояниями спроса фирма располагает двумя стратегиями.

1. F 1 = (1000, 2300) – произвести 1000 костюмов и 2300 платьев,

2. F 2 = (1400, 700) – произвести 1400 костюмов и 700 платьев.

Природа (рынок) располагает также двумя стратегиями:

1. D 1 = погода теплая,

2. D 2 = погода прохладная.

Если фирма примет стратегию F 1 и спрос действительно будет находиться в первом состоянии, то есть погода будет теплой (D 1), то выпущенная продукция будет полностью реализована и доход составит w 11 =1000∙(40-20) + 2300∙(12-5) = 36100.

Если фирма примет стратегию F 1 , а спрос будет находиться в состоянии D 2 (погода прохладная), то платья будут реализованы лишь частично, и доход составит: w 12 = 1000∙(40-20) + 700∙(12-5) – (2300-700)∙5= 16900.

Аналогично, если фирма выберет стратегию F 2 , а природа – стратегию D 1 (погода теплая), то доход составит (будут недораспроданы костюмы):

w 21 =1000∙(40-20) + 700∙(12-5) – (1400-1000)∙20= 16900, а если природа выберет стратегию D 2 , то

w 22 = 1400∙(40-20) + 700∙(12-5) = 32900.

Рассматривая фирму и природу в качестве двух игроков, получим платежную матрицу игры

,

которая будет служить игровой моделью задачи.

Поскольку максиминная стратегия игры составляет a = max (16900, 16900) = =16900, а минимаксная b = min (36100, 3290) = 32900, то цена игры лежит в диапазоне

16900 ден. ед. < ν < 32900 ден. ед.

Решим данную игру аналитическим методом. Средний выигрыш первого игрока, если он использует оптимальную смешанную стратегию xʹ=(x 1 ʹ,x 2 ʹ), а второй игрок – чистую стратегию, соответствующую первому столбцу платежной матрицы, равен цене игры ν:

36100∙x 1 ʹ+16900∙x 2 ʹ= ν.

Тот же средний выигрыш получает первый игрок, если второй игрок применяет стратегию, соответствующую второму столбцу платежной матрицы, то есть

16900∙x 1 ʹ+32900∙x 2 ʹ=ν.

Учитывая, что x 1 ʹ+x 2 ʹ=1, получаем систему уравнений для определения оптимальной стратегии первого игрока и цены игры:

Решаем эту систему и находим:

Оптимальная стратегия фирмы:

Таким образом, фирме оптимально произвести 1218 костюмов и 1427 платьев.

Количество возможных стратегий Получателя - 5, Плательщика - 4. Величины платежа образуют таблицу.

Требуется найти наиболее выгодную чистую стратегию первого игрока, выбирающего строку (Получателя).

1. В каждой строке найдем минимальное значение

2. Из полученных значений возьмем максимальное, то есть вычислим максимин

Найденное значение реализуется при выборе последней (пятой) стратегии А5 Получателя.

Ответ: наиболее выгодной для Получателя (при однократной игре) является стратегия А5, так как при любом выборе Плательщиком его стратегии величина платежа составит а = 3 или больше.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Интрилигатор, М. Математические методы оптимизации и экономическая теория: Учебное пособие/ М. Интрилигатор. – М.: Айрис - пресс, 2002. – 576 с.

2. Баканов, М.И. Теория экономического анализа: Учебное пособие/ М.И. Баканов, М.В. Мельник, А.Д. Шеремет. – 5-е изд., доп. и перераб. – М: Финансы и статистика, 2008. – 536 с.

3. Моргенштерн, О. Теория игр и экономическое поведение / О. Моргенштерн, Дж. фон Нейман. – М.: Книга по Требованию, 2012. – 708 с.

4. Замков, О.О. Математические методы в экономике: Учебное пособие/ О.О. Замков, А.В. Толстопятенко, Ю.Н. Черемных; под общ. ред. А.В. Сидоровича. – 3-е изд., перераб. – М.: Издательство «Дело и Сервис», 2001. – 368 с.

5. Васин, А.А. Введение в теорию игр с приложениями к экономике: Учебное пособие/ А.А. Васин, В.В. Морозов. − М.: 2003. − 278 с.

6. Волков, И.К. Исследование операций: Учебник для вузов / И.К. Волков, Е.А. Загоруйко; под ред. B.C. Зарубина, А.П. Крищенко. − М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. – 436 с.

7. Писарук, Н. Н. Введение в теорию игр: Учебное пособие / Н.Н. Писарук. − Минск: БГУ, 2015. – 256 c.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20