СО2 необходим растениям для чего? Как доказать необходимость CO2? Какой газ необходим для дыхания

Атмосферный воздух представляет собой физическую смесь азота, кислорода, углекислого газа (двуокиси углерода), аргона и других инертных газов. В сухом атмосферном воздухе содержатся: кислорода - 20,95%, азота - 78,09%, углекислого газа - 0,03%. В небольших количествах представлены аргон, гелий, неон, криптон, водород, ксенон и др. Кроме постоянных составных частей, в воздухе находятся некоторые примеси природного происхождения, а также загрязнения, вносимые в атмосферу за счет производственной деятельности человека.

Составные части воздушной среды по-разному воздействуют на организм животных.

Азот является наибольшей составной частью атмосферного воздуха, принадлежит к инертным газам, он не поддерживает дыхание и горение. В природе идет непрерывный процесс круговорота азота, в результате которого азот атмосферы превращается в органические соединения, а при разложении их он восстанавливается и вновь поступает в атмосферу и снова связывается с биологическими объектами. Азот для растений служит источником питания.

Атмосферный азот, кроме того, является разбавителем кислорода, дыхание чистым кислородом приводит к необратимым изменениям в организме.

Кислород - важнейший для жизни газ воздуха, так как он необходим для дыхания. Попадая в легкие, кислород поглощается кровью и разносится ею по всему организму - он поступает во все ее клетки и расходуется там на окисление питательных веществ, образуя углекислый газ и воду. Все химические процессы в животном организме, связанные с образованием различных веществ, с работой мышц и органов, с выделением тепла, происходят только при наличии кислорода.

Кислород в чистом виде обладает токсическим воздействием, что связывают с окислением ферментов.

Животные потребляют в среднем следующее количество кислорода (мл/кг массы): лошадь в состоянии покоя - 253, во время работы - 1780, корова - 328, овца - 343, свинья - 392, курица - 980. Количество потребляемого кислорода зависит также от возраста, пола и физиологического состояния организма. Содержание кислорода в воздухе закрытых помещений для животных при недостаточном обмене воздуха - вентиляции может снижаться, что при длительном воздействии сказывается на их здоровье и продуктивности. Наиболее чувствительны к этому птицы.

Углекислый газ (двуокись углерода, СО 2) играет большую роль в жизнедеятельности животных и человека, так как является физиологическим возбудителем дыхательного центра. Снижение концентрации углекислого газа во вдыхаемом воздухе не представляет существенной опасности для организма, так как необходимый уровень парциального давления этого газа в крови обеспечивается регулированием кислотно-щелочного равновесия. Повышенное же содержание углекислого газа в атмосферном воздухе сказывается отрицательно на организме животных. При вдыхании больших концентраций углекислого газа в организме нарушаются окислительно-восстановительные процессы, происходит накопление двуокиси углерода в крови, что приводит к возбуждению дыхательного центра. При этом дыхание становится более частым и глубоким. У птиц накопление углекислого газа в Крови не учащает дыхания, а вызывает его замедление и даже остановку. Поэтому в помещениях для птиц предусматривается постоянный приток наружного воздуха в гораздо больших количествах (из расчета на 1 кг массы), чем для млекопитающих.

В гигиеническом отношении двуокись углерода является важным показателем, по которому судят о степени чистоты воздуха - эффективности работы вентиляции. Если в животноводческих помещениях плохо работает вентиляция, углекислый газ накапливаться в значительных количествах, так как в выдыхаемом воздухе его содержится до 4,2%. Много углекислого газа поступает в воздух помещения, если оно обогревается газовыми горелками. Поэтому в таких помещениях вентиляционные сооружения должны быть более мощными.

Максимально допустимое количество углекислого газа в воздухе животноводческих помещений не должно превышать 0,25% для животных и 0,1 — 0,2% для птиц.

Окись углерода (угарный газ) - в атмосферном воздухе отсутствует. Однако при работе в животноводческих помещениях техники - тракторов, кормораздатчиков, теплогенераторов и др. он выделяется с выхлопными газами. Выделение угарного газа наблюдается также при работе газовых горелок.

Окись углерода - сильный яд для животных и человека: соединяясь с гемоглобином крови, он лишает его способности переносить кислород из легких в ткани. При вдыхании этого газа животные погибают от удушья вследствие острого недостатка кислорода. Ядовитое действие начинает проявляться уже при накоплении 0,4% окиси углерода. Чтобы предупредить подобные отравления, следует хорошо проветривать помещения, где работают двигатели внутреннего сгорания, проводить регламентные работы теплогенераторов и других механизмов, выделяющих угарный газ.

При отравлении животных угарным газом в первую очередь их необходимо вывести из помещения на свежий воздух. Предельно допустимая концентрация этого газа - 2 мг/м3.

Аммиак (NH 3) - бесцветный газ с едким запахом. В атмосферном воздухе встречается редко и в небольших концентрациях. В животноводческих помещениях аммиак образуется при разложении мочи, навоза, подстилки. Особенно он накапливается в помещениях, где плохая вентиляция, не поддерживается чистота пола, животных содержат без подстилки или меняют её несвоевременно, а также в навозохранилищах, жомовых ямах сахарных заводов. Много аммиака образуется в свинарниках, телятниках, птичниках (особенно при напольном содержании птицы), если в этих помещениях сосредоточено большое количество животных. Над местами скопления жижи концентрация аммиака достигает 35 мг/м 3 и более. Поэтому при работах по перекачиванию жидкого навоза, очистке закрытых навозных каналов допускать людей к работе можно только после тщательного проветривания этой зоны.

В старых и холодных помещениях много аммиака скапливается на поверхности оборудования, в мокрой подстилке, так как он лучше растворяется холодной влажной средой. При повышении температуры и понижении атмосферного давления происходит обратное выделение аммиака в воздух помещения.

Постоянное вдыхание воздуха даже с небольшой примесью аммиака (10 мг/м 3) неблагоприятно отражается на здоровье животных. Аммиак, растворяясь на слизистых оболочках верхних дыхательных путей, глаз, раздражает их, кроме того, он рефлекторно уменьшает глубину дыхания, следовательно, и вентиляцию легких. В результате у животных появляется кашель, слезотечение, бронхит, отек легких и др. При воспалительных процессах дыхательных путей снижается и способность слизистых оболочек противостоять проникновению через них микроорганизмов, в т. ч. болезнетворных. При высоких концентрациях аммиака наступает паралич дыхания, животное погибает.

В крови аммиак соединяется с гемоглобином и превращает его в щелочный гематин, который не способен поглощать кислород при дыхании, т. е. наступает кислородное голодание. Сильная степень отравления характеризуется обморочным состоянием, судорогами. Аммиак с влагой образует агрессивную среду, которая приводит в негодность машины, механизмы, здание.

Предельно допустимая концентрация этого газа 20 мг/м 3 , для молодняка и птицы - 5-10 мг/м 3 .

Необходимо помнить, что аммиак действует отрицательно не только на животных, но и на обслуживающий персонал. Поэтому в целях охраны здоровья работающих в помещениях, а также для создания нормальных условий животным, следует оборудовать здания эффективной вентиляцией. Большое значение имеет исправная и бесперебойно действующая система навозоудаления. Уменьшить содержание аммиака можно рассыпанием на подстилке молотого суперфосфата из расчета 250 — 300 г/м 2 , применением кондиционной торфяной подстилки, а для быстрого снижения концентрации этого газа можно использовать аэрозоль формальдегида, для защиты машин и механизмов применяют антикоррозийное покрытие.

Сероводород (H 2 S) в свободной атмосфере отсутствует или содержится в незначительных количествах. Источником накопления сероводорода в воздухе животноводческих помещений служит гниение серосодержащих органических веществ и кишечные выделения животных, особенно при использовании богатых белком кормов или расстройствах пищеварения. Сероводород может поступать в воздух помещений из жижеприемников и навозных каналов.

Вдыхание этого газа в незначительных количествах (10 мг/м 3) вызывает воспаление слизистых оболочек, кислородное голодание, а в больших концентрациях - паралич дыхательного центра и центра, управляющего сокращением кровеносных сосудов. Всасываясь в кровь, сероводород блокирует активность ферментов, обеспечивающих процесс дыхания. Железо гемоглобина крови связывается с сероводородом в сульфид железа, поэтому гемоглобин не может участвовать в связывании и переносе кислорода. В слизистых оболочках он образует сульфид натрия, вызывающий их воспаление.

Содержание во вдыхаемом воздухе сероводорода свыше 10 мг/м 3 может вызвать быструю смерть животного и человека, а длительное воздействие незначительной его примеси - хроническое отравление, проявляющееся общей слабостью, нарушениями пищеварения, воспалением дыхательных путей, снижением продуктивности. У людей при хроническом отравлении сероводородом наступает слабость, исхудание, потливость, головные боли, расстройство сердечной деятельности, катар дыхательных путей, гастроэнтериты.

Допустимая концентрация сероводорода в воздухе помещений - 5 — 10 мг/м 3 . Запах сероводорода ощущается уже при концентрациях 1,4 мг/м 3 , четко выражен при 3,3 мг/м 3 , значительный - при 4 мг/м 3 , тягостный - при 7 мг/м 3 .

Для предупреждения образования сероводорода в помещениях необходимо следить за исправным состоянием канализационных сооружений, применять качественную газопоглощающую подстилку, соблюдать надлежащую гигиеническую и ветеринарно-санитарную культуру на фермах и комплексах, гарантировать своевременное удаление навоза.

Влияние других газов, обнаруживаемых в помещениях для животных (индол, скатол, меркаптан и др.), изучено еще слабо.

Традиционно считается, что для жизни живых организмов необходим кислород. Поэтому достаточно удивительно было прочитать название статьи "СО2 необходим растениям для...". Ответ на эту загадку смотрите ниже.

и его свойства

Карбон диоксид, угольный ангидрит, - все это названия одного и того же вещества. Это всем известный углекислый газ. При нормальных условиях это вещество находится в газообразном состоянии, при этом оно не имеет цвета и запаха. При понижении температуры воздуха углекислый газ твердеет и приобретает белый цвет. В такой модификации его называют Это достаточно химически активное вещество. Углекислый газ реагирует с металлами, оксидами и щелочами. Он способен образовывать нестойкое соединение с гемоглобином крови, подобно кислороду. Так осуществляется газообмен при помощи кровеносной системы. Он не является ядовитым веществом, однако при большой концентрации его относят к токсичным газам.

В природе он образуется в результате дыхания живых организмов, гниении и горении. В газообразном состоянии карбон диоксид растворяется в воде. Вот почему, возможно говорить о системах подачи СО2 в аквариумах с растениями и их необходимости для нормальной жизнедеятельности водорослей. Имеет углекислый газ и промышленное значение. Его широко используют в пищевой отрасли в качестве разрыхлителя и консерванта. В сжиженном состоянии им заполняют огнетушители и автоматические системы пожаротушения.

Что такое фотосинтез

Прежде всего СО2 необходим растениям для протекания важнейшего процесса, который имеет планетарное значение - фотосинтеза. В его ходе из ряда неорганических веществ образуется углевод глюкоза. Именно его используют растения для питания, роста, развития и других процессов жизнедеятельности. Кроме того, еще одним продуктом данной реакции является кислород - основное условие существования всех живых существ на планете, поскольку он необходим для дыхания. Газообмен в растении возможен благодаря наличию в покровной ткани их листьев особых образований - устьиц. Каждая из них состоит из двух створок. При определенных условиях они смыкаются и размыкаются. Через них происходит поступление и кислорода, и углекислого газа.

Условия протекания фотосинтеза

Фотосинтез происходит только в специализированных структурах основной и покровной ткани листа. Они называются хлоропласты. Их внутренне содержимое представлено тилакоидами гран и стромы, на которых располагается - пигмент хлорофилл. Он придает некоторым частям растения зеленый цвет. В хоропластах фотосинтез происходит только при определенных условиях. Это наличие солнечного света, воды и углекислого газа. А результатом данной химической реакции является образование органического вещества глюкозы и газа кислорода. Первое из них - источник жизни самих растений, второе используют все остальные для осуществления имеет планетарное значение.

Углекислый газ и растения

Как доказать необходимость CO2? Очень просто. Поскольку углекислый газ выделяется в природе в результате дыхания, его недостатка в природе не наблюдается. Однако в аквариумной воде его не так много из-за небольшого видового разнообразия живых организмов. Поэтому если не использовать специальные установки для подачи углекислого газа, через определенное время его количества будет недостаточно для интенсивного протекания Ведь СО2 необходим растениям для того, чтобы самостоятельно производить питательные вещества. Своевременная и постоянная подача углекислого газа в воду станет условием, что ваш аквариум наполнится пышными и яркими водорослями.

Газ, необходимый растениям для дыхания: важность кислорода

Получается, что в результате своей жизнедеятельности а не поглощают его. Тогда возникает вопрос: а как же они дышат, и вообще происходит ли у них процесс окисления и расщепления органических веществ? Безусловно, как и все остальные живые организмы, они используют тот самый кислород. Получается, что в растениях одновременно происходят два практически противоположных процесса. Это фотосинтез и дыхание. Каждый из них необходим для нормальной жизнедеятельности растений.

Фотосинтез и дыхание: что важнее

Уникальность растений заключается в том, что они единственные из живых существ выделяют и кислород, и углекислый газ практически одновременно. Но это совсем не означает, что они опасны и их нельзя располагать в жилых помещениях. Все дело в том, что кислорода растения выделяют гораздо больше, чем углекислого газа.

Чтобы не нарушать это природное равновесие, необходимо соблюдение условий протекания этих процессов. Например, если в помещение с комнатными растениями не проникает солнечный свет, фотосинтез не происходит. При этом образование глюкозы останавливается. Зато процесс дыхания продолжается. В воздухе накапливается большое количество углекислого газа. И в этом случае растения могут стать опасными. В итоге оба эти процесса жизненно важны. Только за счет кислорода растения дышат, а с помощью углекислого газа производят глюкозу и питаются.

Итак, СО2 необходим растениям для осуществления процесса получения органических веществ - фотосинтеза, который имеет важнейшее значение планетарного масштаба.

Для того чтобы знать пути зарождения жизни, необходимо сначала изучить признаки и свойства живых организмов. Знание химического состава, строения и различных процессов, протекающих в организме, дает возможность понять происхождение жизни. Для этого познакомимся с особенностями образования первых неорганических веществ в космическом пространстве и появления планетарной системы.

Атмосфера древней Земли. По последним данным ученых, исследователей космоса, небесные тела образовались 4,5-5 млрд. лет назад. На первых этапах формирования Земли в ее состав входили оксиды, карбонаты, карбиды металлов и газы, извергавшиеся из глубин вулканов. В результате уплотнения земной коры и действия гравитационных сил стало выделяться большое количество тепла. На повышение температуры Земли оказали влияние распад радиоактивных соединений и ультрафиолетовые излучения Солнца. В это время вода на Земле существовала в виде пара. В верхних слоях воздуха водяные пары собирались в облака, которые выпадали на поверхность горячих камней в виде ливневых дождей, затем вновь, испаряясь, поднимались в атмосферу. На Земле сверкали молнии, гремели раскаты грома. Это продолжалось долго. Постепенно поверхностные слои Земли стали остывать. Из-за ливневых дождей образовались небольшие водоемы. Потоки раскаленной лавы, которые текли с вулканов, и зола попадали в первичные водоемы и непрерывно изменяли условия окружающей среды. Такие непрерывные изменения окружающей среды способствовали возникновению реакций образования органических соединений.
В атмосфере Земли еще до возникновения жизни содержались метан, водород, аммиак и вода (1). В результате химической реакции соединения молекул сахарозы образовались крахмал и клетчатка, а из аминокислот - белки (2,3). Из сахарозы и соединений азота образовались саморегулирующие молекулы ДНК (4) (рис. 9).

Рис. 9. Приблизительно 3,8 млрд. лет назад путем химических реакций образовались первые сложные соединения

В составе первичной атмосферы Земли не было свободного кислорода. Кислород встречался в виде соединений железа, алюминия, кремния и участвовал в образовании различных минералов земной коры. Кроме того, кислород присутствовал в составе воды и некоторых газов (например, углекислого). Соединения водорода с другими элементами образовывали ядовитые газы на поверхности Земли. Ультрафиолетовые излучения Солнца явились одним из необходимых источников энергии для образования органических соединений. К широко распространенным в атмосфере Земли неорганическим соединениям относятся метан, аммиак и другие газы (рис. 10).


Рис. 10. Начальный этап возникновения жизни на Земле. Образование сложных органических соединений в первичном океане


Образование органических соединений абиогенным путем. Знание условий окружающей среды на начальных этапах развития Земли имело огромное значение для науки. Особое место в этой области занимают работы русского ученого А. И. Опарина (1894-1980). В 1924 г. он высказал предположение о возможности прохождения химической эволюции в начальные этапы развития Земли. Теория А. И. Опарина основывается на постепенном длительном усложнении химических соединений.
Американские ученые С. Миллер и Г. Юри в 1953 г. согласно теории А. И. Опарина поставили опыты. Пропуская электрический разряд через смесь метана, аммиака и воды, они получили различные органические соединения (мочевина, молочная кислота, различные аминокислоты). Позднее такие опыты повторили многие ученые. Полученные результаты опытов доказали правильность гипотезы А. И. Опарина.
Благодаря выводам названных выше опытов, было доказано, что в результате химической эволюции первобытной Земли образовались биологические мономеры.

Образование и эволюция биополимеров. Совокупность и состав органических соединений, образованных в различных водных пространствах первичной Земли, были разного уровня. Образование таких соединений абиогенным путем доказано экспериментально.
Американский ученый С. Фокс в 1957 г. высказал мнение о том, что аминокислоты могут образовывать, соединяясь между собой, пептидные связи без участия воды. Он заметил, что при нагревании, а затем охлаждении сухих смесей аминокислот их белковоподобные молекулы образуют связи. С. Фокс пришел к выводу, что на месте бывших водных пространств под действием тепла потоков лавы и солнечных излучений произошли самостоятельные соединения аминокислот, которые дали начало первичным полипептидам.

Роль ДНК и РНК в эволюции жизни. Главное отличие нуклеиновых кислот от белков - способность удваиваться и воспроизводить точные копии первоначальных молекул. В 1982 г. американский ученый Томас Чек открыл ферментативную (каталитическую) активность молекул РНК. В итоге он заключил, что молекулы РНК - самые первые полимеры на Земле. Молекулы ДНК по сравнению с РНК более устойчивы в процессах распада в слабощелочных водных растворах. А среда с такими растворами была в водах первичной Земли. В настоящее время это условие сохранено только в составе клетки. Молекулы ДНК и белки взаимосвязаны. Например, белки защищают молекулы ДНК от вредного воздействия ультрафиолетовых лучей. Мы не можем назвать белки и молекулы ДНК живыми организмами, хотя им присущи некоторые признаки живых тел, потому что у них полностью не сформированы биологические мембраны.

Эволюция и образование биологических мембран. Параллельное существование белков и нуклеиновых кислот в пространстве, возможно, открыло путь для возникновения живых организмов. Это могло произойти только при наличии биологических мембран. Благодаря биологическим мембранам образуется связь между окружающей средой и белками, нуклеиновыми кислотами. Только через биологические мембраны идет процесс обмена веществ и энергии. На протяжении миллионов лет первичные биологические мембраны, постепенно усложняясь, присоединяли в состав различные белковые молекулы. Таким образом, путем постепенного усложнения появились первые живые организмы (протобионты). У протобионтов постепенно формировались системы саморегуляции, самовоспроизведения. Первые живые организмы приспособились к жизни в бескислородной среде. Все это соответствует мнению, высказанному А. И. Опариным. Гипотеза А. И. Опарина в науке называется коацерватной теорией. Эту теорию в 1929 г. поддержал английский ученый Д. Холдейн. Многомолекулярные комплексы с тонкой водной оболочкой снаружи называются коацерватами или коацерватной каплей. Некоторые белки в составе коацерватов выполняли роль ферментов, а нуклеиновые кислоты приобрели возможность передачи информации по наследству (рис. 11).

Рис. 11. Образование коацерватов - многомолекулярных комплексов с водной оболочкой

Постепенно у нуклеиновых кислот сформировалась способность к удвоению. Связь коацерватной капли с окружающей средой привела к осуществлению самого первого простого обмена веществ и энергии на Земле.
Таким образом, основные положения теории возникновения жизни по А. И. Опарину таковы:

  1. в результате непосредственного влияния факторов окружающей среды из неорганических веществ образовались органические;
  2. образованные органические вещества оказали влияние на образование сложных органических соединений (ферментов) и свободных самовоспроизводящих генов;
  3. образованные свободные гены соединились с другими высокомолекулярными органическими веществами;
  4. у высокомолекулярных веществ снаружи постепенно появились белково-липидные мембраны;
  5. в результате названных процессов появились клетки.

Современный взгляд на возникновение жизни на Земле называется
теорией биопоэза (органические соединения образуются из живых организмов). В настоящее время она носит название биохимической эволюционной теории появления жизни на Земле. Эту теорию предложил в 1947 г. английский ученый Д. Бернал. Он различал три этапа биогенеза. Первый этап-это возникновение биологических мономеров абиогенным путем. Второй этап - образование биологических полимеров. Третий этап - возникновение мембранных структур и первых организмов (протобионтов). Группировка сложных органических соединений в составе коацерватов и их активное взаимодействие между собой создают условия для образования саморегулирующих простейших гетеротрофных организмов.
В процессе возникновения жизни произошли сложные эволюционные изменения - образование органических веществ из неорганических соединений. Сначала появились хемосинтезирующие, затем постепенно - фотосинтезирующие организмы. В появлении большего количества свободного кислорода в атмосфере Земли огромную роль сыграли фотосинтезирующие организмы.
Химическая эволюция и эволюция первых организмов (протобионтов) на Земле продлилась до 1-1,5 млрд. лет (рис. 12).


Рис. 12. Схема перехода химической эволюции в биологическую

Первичная атмосфера. Биологическая мембрана. Коацерват. Протобионт. Теория биопоэза.

  1. Небесные тела, в том числе земной шар, появились 4,5-5 млрд. лет назад.
  2. В период возникновения Земли было достаточно много водорода и его соединений, а свободного кислорода не было.
  3. На начальном этапе развития Земли единственным источником энергии были ультрафиолетовые излучения Солнца.
  4. А. И. Опарин высказал мнение, что в начальный период на Земле происходит только химическая эволюция.
  5. На Земле впервые появились биологические мономеры, из которых постепенно образовались белки и нуклеиновые кислоты (РНК, ДНК).
  6. Первые организмы, появившиеся на Земле, - протобионты.
  7. Многомолекулярные комплексы, окруженные тонкой водной оболочкой, называются коацерватами.
    1. Что такое коацерват?
    2. В чем смысл теории А. И. Опарина?
    3. Какие ядовитые газы были в первичной атмосфере?
      1. Дайте характеристику состава первичной атмосферы.
      2. Какую теорию об образовании аминокислот на поверхности Земли представил С. Фокс?
      3. Какую роль выполняют нуклеиновые кислоты в эволюции жизни?
    1. В чем сущность опытов С. Миллера и Г. Юри?
    2. На чем основывался А. И. Опарин в своих гипотезах?
    3. Назовите основные этапы появления жизни.

* Проверь знания!
Вопросы для повторения. Глава 1. Происхождение и начальные этапы развития жизни на Земле

    1. Уровень организации жизни, на котором решаются глобальные проблемы.
    2. Индивидуальное развитие отдельных особей организма.
    3. Устойчивость внутренней среды организма.
    4. Теория возникновения жизни путем химической эволюции неорганических веществ.
    5. Историческое развитие организмов.
    6. Уровень организации жизни, состоящий из клеток и межклеточных веществ.
    7. Свойство живых организмов воспроизведения себе подобных.
    8. Уровень жизни, характеризующийся единством сообщества живых организмов и окружающей среды.
    9. Уровень жизни, характеризующийся наличием нуклеиновых кислот и других соединений.
    10. Свойство изменения жизнедеятельности живых организмов соответственно годовым циклам.
    11. Взгляд о занесении жизни из других планет.
    12. Уровень организации жизни, представленный структурной и функциональной единицей всех живых организмов на Земле.
    13. Свойство тесной связи живых организмов с окружающей средой.
    14. Теория, связывающая возникновение жизни с действием "жизненных сил".
    15. Свойство живых организмов обеспечивать передачу признаков своему потомству.
    16. Ученый, доказавший с помощью простого опыта неправильность теории о самозарождении жизни.
    17. Русский ученый, предложивший теорию возникновения жизни абиогенным путем.
    18. Газ, необходимый для жизни, отсутствовавший в составе первичной атмосферы.
    19. Ученый, высказавший мнение об образовании пептидной связи путем соединения между собой аминокислот без участия воды.
    20. Самые первые живые организмы с биологической мембраной.
    21. Высокомолекулярные комплексы, окруженные тонкой водной оболочкой.
    22. Ученый, который впервые дал определение понятию жизнь.
    23. Свойство живых организмов реагировать на различные влияния факторов окружающей среды.
    24. Свойство изменения признаков наследственности живых организмов под влиянием различных факторов окружающей среды.
    25. Уровень организации жизни, при котором заметны первые простые эволюционные изменения.

Искусство дыхания заключается в том, чтобы почти не выдыхать углекислый газ и терять его как можно меньше. Как пример, реакция биосинтеза растений — поглощение углекислого газа, утилизация углерода и выделение кислорода, и именно в те времена на планете существовала очень пышная растительность. Углекислый газ С02 постоянно образуется в клетках организма.

Дыхание — обмен газов, с одной стороны, между кровью и внешней средой (наружное дыхание), с другой — обмен газов между кровью и клетками тканей (внутреннее или тканевое дыхание).

Для чего человеку углекислый газ?

Кислород участвует в обмене веществ. Поэтому прекращение поступления кислорода приводит к гибели тканей и организма. Главной частью дыхательной системы организма человека являются лёгкие, которые выполняют основную функцию дыхания — обмен кислородом и углекислым газом между организмом и внешней средой обитания. Такой обмен возможен благодаря сочетанию вентиляции, диффузии газов через альвеолярно-капиллярную мембрану и лёгочного кровообращения.

Как углекислый газ распространяется в атмосфере Земли?

В процессе внешнего дыхания кислород из внешней среды доставляется в альвеолы лёгких. Процесс внешнего дыхания начинается с верхних дыхательных путей, которые очищают, согревают и увлажняют вдыхаемый воздух. Вентиляция лёгких зависит от дыхательного обмена и частоты дыхания. Диффузия кислорода осуществляется через ацинус — структурную единицу лёгкого, который состоит из дыхательной бронхиолы и альвеол.

Кислород необходим организмам для дыхания. Недостаток кислорода в воздухе отражается на жизнедеятельности живых организмов. Если в воздухе количество кислорода уменьшается до 1/3 его части, то у человека теряется сознание, а при уменьшении до 1/4 части - прекращается дыхание и наступает смерть.

Его вдувают в доменные печи для ускорения выплавки металлов. Углекислый газ образуется при горении (дров, торфа, каменного угля, нефти). Много его выделяют в воздух при дыхании организмы, в том числе и человек. Будучи тяжелее воздуха, углекислый газ в большем количестве находится в нижних слоях атмосферы, скапливается в понижениях Земли (пещерах, шахтах, ущельях).

Человек широко использует углекислый газ для газирования фруктовой и минеральной воды при разливе ее в бутылки. Углекислый газ, как и кислород, при сильном сжатии и низкой температуре из газообразного состояния переходит в жидкое и твердое состояния. Углекислый газ в твердом состоянии называют сухим льдом. Его применяют в холодильных камерах при сохранении мороженого, мяса и других продуктов.

Углекислый газ не поддерживает горение, тяжелее воздуха, и поэтому его используют при тушении пожаров. Почему без кислорода не могут жить люди и другие живые организмы? Благодаря чему в воздухе постоянно имеется кислород? Как получают и где применяют жидкий кислород?

Откуда в газировке пузырьки (углекислый газ)?

Воздухом называется смесь природных газов — азота, кислорода, аргона, углекислого газа, воды и водорода. Он является первоисточником энергии всех организмов и залогом здорового роста и долгой жизни. Благодаря воздуху в организмах происходит процесс метаболизма и развития. Основополагающими компонентами необходимыми для роста и жизни растений являются кислород, углекислый газ, водные пары и почвенный воздух. Кислород необходим для дыхания, а углекислый газ для углеродного питания.

В этом элементе нуждаются и корни и листья, и стебли растений. Углекислый газ проникает в растение путем внедрения через его устьица в среду листа, попадая в клетки. Чем выше концентрация углекислого газа, тем лучше становится жизнь растений. Также воздух играет особую роль в формировании механических тканей у наземных растений.

Возраст, пол, размер и физическая активность напрямую связаны с потребляемым количеством воздуха. Организм животных очень чувствителен к недостатку кислорода. Это приводит к накоплению вредных токсических веществ в организме. Кислород необходим для насыщения крови и тканей живого существа. Поэтому при нехватке этого элемента у животных учащается дыхание, ускоряется ток крови, снижаются окислительные процессы в организме, животное становится беспокойным.

Углекислый газ не виноват в глобальном потеплении

Воздух является жизненно необходимым фактором для человека. Он разносится кровью по телу, насыщая каждый орган и каждую клетку организма. Именно в воздухе происходит тепловой обмен человеческого организма с окружающей средой. Суть этого обмена заключается в конвекционной отдаче тепла и испарении влаги их легких человека. С помощью дыхания человек насыщает организм энергией. Причиной этому служит производственная и техногенная деятельность человека.

Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту, однако частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту). Взрослый человек делает 15-17 вдохов-выдохов в минуту, а новорождённый ребёнок делает 1 вдох в секунду. Обычный спокойный выдох происходит в большой степени пассивно, при этом активно работают внутренние межрёберные мышцы и некоторые мышцы живота.

Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400-500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха.

После максимального выдоха в лёгких остаётся воздух в количестве около 1 500 мл, называемый остаточным объёмом лёгких. Дыхание - одна из немногих функций организма, которая может контролироваться сознательно и неосознанно. Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное).

Лёгкие (лат.pulmo, др.-греч.πνεύμων) расположены в грудной полости в окружении костей и мышц грудной клетки. Кроме того, дыхательная система участвует в таких важных функциях, как терморегуляция, голосообразование, обоняние, увлажнение вдыхаемого воздуха.

При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. У человека при работе умеренной мощности он увеличивается, через 3-6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене.

Какое применение находит кислород в промышленности? Оказалось, что углекислый газ до известного предела способствует более полному усвоению кислорода организмом. Углекислота так же участвует в биосинтезе животного белка, в этом некоторые ученые видят возможную причину существования много миллионов лет назад гигантских животных и растений.

Дыхание – это такой естественный для нас процесс, что, наверное, мало кто задумывается о том, как мы дышим и чем. Я вот об этом задумалась еще в детстве, когда мое дыхание было нарушено простудой. Тогда мой заложенный нос просто не давал мне думать ни о чем другом.

Чем мы все дышим

Еще со школьной скамьи всем нам известно, что человеку для дыхания необходим кислород . Он является одним из наиболее важных элементов, необходимых для поддержания жизни на нашей с вами планете в привычной нам форме. Кислород содержится не только в воздухе. Он является составляющим компонентом и в гидросфере Земли. Именно благодаря этому факту в воде также есть жизнь.


Как химический элемент кислород был обнаружен Карлом Шеле еще в далеком 1773 году.

Факты о кислороде

Кислород – не только жизненно необходимый, но еще и очень любопытный элемент. Приведу подборку интересных фактов, о которых вы, возможно, еще не слышали:


Что произойдет, если дышать чистым кислородом

Как я уже говорила выше, кислород в чистом виде и в большой концентрации опасен и даже ядовит. А что произойдет с человеком, если он какое-то время им подышит?

Привычное нам нормальное содержание кислорода в воздухе примерно 21% . Отравление организма наступает, если это содержание повысится до 50%. Это может привести к увеличению концентрации углекислого газа в организме, судорогам, кашлю, потере зрения и в конечном счете к летальному исходу.